
Specific Aims — Computational & Predictive Modeling Core (CPM) 
Methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans (CA) are common commensal 
organisms and the most common life-threatening bloodstream infections, arising from both community-
acquired and healthcare-associated settings. Despite the existence of effective therapies, both infections are 
associated with poor outcomes1,2. Treatment outcomes are poorly predicted by either in vitro drug 
effectiveness or the pathogen’s genetic features, indicating that outcomes are primarily driven either by 
features of the host response or pathogen-host interactions. 

Recent progress has been made in identifying the determinants of outcome in both infections. Several 
demographic and clinical factors are weakly associated with outcome but are insufficiently predictive in 
individual patients1,2. Based upon the hypothesis that outcome is determined by the confluence of host, 
pathogen, and antibiotic features, we have previously used broad molecular profiling to identify the molecular 
variation in infection response. This systems-level analysis previously identified genetic3,4, methylation5, 
transcriptional, and cytokine4,6,7 predictors of MRSA persistence. However, the extent to which these 
signatures operate as distinct molecular mechanisms of immune response, or reflect shared underlying 
molecular mechanisms, is yet unclear. We expect that pan-signature patterns might also improve predictions of 
outcome if they help refine our view of shared molecular mechanisms. 20% of all CA bloodstream infections 
are polymicrobial with Staphylococcus aureus as a common co-isolated organism8. Thus, one might expect 
there are either host immunologic deficiencies or commonalities in immune evasion mechanisms that create a 
shared permissive niche. 

Dimensionality reduction is an essential tool in identifying patterns across datasets. These techniques, 
such as principal component analysis, visualize variation, reduce noise, impute missing values, and reduce 
dimensionality. When integrating data across additional modes (e.g., subjects, genes, and time in a 
longitudinal RNAseq study) higher-order tensor-based dimensionality reduction methods exist with the same 
benefits9–12. These methods are naturally suited to combining different types of measurements, as each 
dataset mode (e.g., each subject) is effectively isolated10,12. Tensor-based dimensionality reduction supplies 
enhanced benefits when data can be organized in tensor form by reducing the data to a greater extent, 
improving factor interpretation by isolating effects along each mode, and effectively handling confounding 
factors like batch effects10,12,13. However, tensor-based dimensionality reduction methods currently have 
significant limitations in the scope of their use. Most critically, it must be possible to perfectly align 
measurements along each dataset mode which is not feasible in many situations such as longitudinal studies9. 

A central focus of the computational core will be cross-project data integration. We will start by focusing on 
developing new methodologies for longitudinal data dimensionality reduction and data integration using pre-
existing profiling in CA infection. Next, we will identify common patterns across MRSA and CA infection 
subjects. Finally, we will coordinate closely with each project to identify how mechanisms identified in model 
systems are reflected in the clinical cohorts. These data integration efforts will allow us to test a series of 
hypotheses about the nature of CA progression, similarities in the determinants of MRSA and CA infection and 
outcome, and how signatures of immunologic and pathogen response from the mechanistic studies are 
reflected in the human infection samples. 
 

Aim 1: Evaluate the integrated longitudinal determinants of CA outcome 
Hypothesis: CA infection outcome is associated with distinct immunological trajectories. 

a) Integrate proteomics and gene expression through a continuous mode coupled tensor decomposition 
b) Express longitudinal dynamics as a dynamical system to infer regulatory component interactions 
c) Test for association between CA immunological trajectories and mortality 

 

Aim 2: Identify shared and distinct molecular and cellular patterns across MRSA and CA 
Hypothesis: Shared molecular patterns exist across molecular measurement and infection types. 

a) Improve factorization of clinical cytokine panels 
b) Integrate MRSA and CA transcriptomic, methylation, and cytokine measurements 
c) Identify pattern associations with age, sex, infection outcome, and isolate properties 

 

Aim 3: Integrate outcomes from experimental models and human infection 
Hypothesis: Deep murine model & isolate response profiling will identify mechanisms found in human infection. 

a) Identify interactions between MRSA epigenetic plasticity & murine/human immune responses 
b) Characterize interactions between CA phenotypic and immunologic response features 
c) Infer the effects of PAMPs and corresponding trained innate immunity 

 

In executing these activities, the CPM core will contribute to the impact of each project. It will also lead key 
methodologic advancements in the systems analysis of infection and immunologic response.  



Significance 
Both methicillin-resistant Staphylococcus 
aureus (MRSA) and Candida albicans 
(CA) are commonly found commensal 
organisms. While these organisms 
coexist with their human hosts in most 
circumstances, in some individuals, most 
often those immunocompromised in 
some form, these organisms cause 
deadly, invasive infections2. Effective 
therapeutic agents exist against both 
organisms. However, even when 
isolates from a subject are effective in 
vitro, therapy can be ineffective in 
resolving infection in vivo. Thus, there is 
a critical need to understand the 
immunological determinants of infection 
risk, and how interactions between the 
organisms and host determine effective 
clearance, persistence, or mortality. 

Recent progress has been made in 
identifying the clinical and molecular 
determinants of susceptibility and 
outcome to both infections3–7,14. While 
demographic and clinical factors are 
associated with infection and outcome, 
they are insufficiently predictive in 
individuals and do not reveal a 
mechanistic picture1,4,7,8. Molecular 
signatures of infection susceptibility, 
resolution, and mortality have helped to 
reveal variation in the immunologic 
response of subjects. However, it is yet 
unclear to what extent these signatures 
are distinct or reflect a common 
immunologic niche. 

We hypothesize that identifying 
commonalities in molecular signatures 
between molecular modalities in the 
same subjects will help to both provide a 
more mechanistic view of infection and 
improve predictions of infection 
outcome. Pan-signature patterns will 
help to improve our understanding of 
infection by providing a more complete 
view of the immunologic differences (Fig. 
1). They can correspondingly help to improve outcome predictions in two ways: First, if patterns turn out to be 
reflections of the same underlying immunologic features, the fusion of these patterns should provide a more 
accurate estimate of its presence within individual subjects. Second, if two predictive patterns reflect 
independent variation, recognizing this will help to stratify subjects into separate groups, with potentially 
differing responses to therapeutic interventions. 

Identifying shared patterns across the response to both MRSA and CA infections will similarly improve our 
understanding of both diseases. 20% of all CA bloodstream infections are polymicrobial with Staphylococcus 
aureus as a common co-isolated organism8. Further, IL-10 production has been identified has an indicator in 
both infections of a non-productive immune response and poor pathogen eradication3,5,6. Thus, one might 
expect there are either host immunologic deficiencies or commonalities in immune evasion mechanisms that 
create a shared permissive niche. Beyond a shared niche, integrating the molecular profiling from both 
diseases can help to characterize the molecular variation associated with shared clinical covariates, such as 
immunosuppressive drugs, age, and sex. Most accurately defining these molecular patterns of variation can in 

 
Figure 1. MRSA preliminary data integration through coupled matrix-tensor 

factorization. a) The UCLA immunogenomics center profiled samples from 
MRSA bacteremia subjects. b) Cytokines from two sources can be arranged in 

tensor form, while the RNAseq gene modules are a matrix that shares a subjects 
mode. Decomposition takes the form of vector outer products, with shared 

subject factors. c–g) Subject (c), cytokine (d), cytokine source (e), and 
expression (g, subset shown) factors describe the results. As the data is 
estimated by the outer product of the factors, the resulting factorization is 

interpretable. For example, component 9 explains an increase in IL-17A (d) that 
is preferentially present in the plasma (e). Through the logistic regression 

weights, we can see that component 9 is associated with persistence and female 
sex. Gene module P2_I8_M8, weighted on component 9 (g), includes strong 

enrichment of Th17 signatures. More importantly, the combined factors are more 
predictive of outcome (ROC 0.85 vs. 0.7/0.75 for each data type separately). 
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turn help delineate whether a predictive molecular marker might be directly implicated in the response to 
infection, or indirectly implicated via these common characteristics. 

Finally, data integration will aid the integration of the basic/mechanistic and clinical studies. Basic studies 
are essential to mechanistically untangle the regulation behind the immunologic responses to MRSA and CA 
infection. By contrast, the clinical samples are necessary to ensure what is found in basic studies occurs in 
patients. Therefore, our tight integration will ensure the relevance and impact of our core’s findings. 
Innovation 
Extend coupled tensor decompositions to 
continuous representations 

Data tensors are organized multi-modal 
arrays. Their one-mode and two-mode variants 
are vectors and matrices (Fig. 2). Tensor 
decomposition is a suite of dimensionality 
reduction methods that decompose tensors into 
factors9. For instance, CP (canonical polyadic 
or PARAFAC) decomposition (CPD) 
approximates a tensor as the sum of several 
components, each represented as the cross 
product of mode-specific vectors. CPD can be 
thought of as a generalization of matrix 
factorization methods like principal component 
analysis (PCA). 

However, tensor structured data requires 
each entry on every mode to align perfectly, 
which limits its use in longitudinal and other 
studies. For example, longitudinal sample 
collections usually happen sporadically over 
time (e.g., days 1, 3, 7, 13 for one patient, but 
days 1, 5, 8, 11, 17 for another). This prevents 
one from organizing collection time as a 
separate mode in a tensor. Other continuous quantities such as the concentration of drug applied may not be 
matched across studies or may have an effect we wish to constrain to a specific functional form (e.g., Hill 
curve)15–17. Therefore, we propose to extend the definition of CP to work with unaligned modes by expressing 
them as continuous functions. For example, entry 𝒳!"# will be represented as the sum of 𝑎!𝑏"𝑐(𝑘) in each 
component, where 𝑐(𝑘) is a continuous function, instead of 𝑎!𝑏"𝑐#. The continuous function can take many 
forms, can help to constrain the solution, and allows samples along the mode to take unique positions. 
Relaxing this limitation will open application of tensor-based methods to a wide array of profiling studies and 
improve our ability to extract and interpret patterns from the data. Here, we will apply this advancement to 
study the longitudinal dynamics of CA infection (Aims 1 & 2). We will also then integrate this dimensionality 
reduction with dynamical systems analysis to infer interactions between component patterns that give rise to 
the observed dynamic responses (Aim 1B). Through these applications, this advancement will help us to 
derive more detailed insights into the mechanisms of CA infection. 
Improved methods for factor analysis of low abundance cytokines 
Matrix and tensor factorizations are extremely powerful tools for reducing the dimensionality of complex data. 
In fact, matrix and tensor completion methods can be some of the most accurate missing value imputation 
approaches, enabling use of other modeling techniques that require complete and uncensored datasets10,18. 
However, these methods are most effective when they account for confounding factors in the data generation 
process, such as censorship or missing values. 

The limited sensitivity of multiplexed cytokine measurements is one of the most common challenges in their 
modeling19. For instance, in our earlier MRSA profiling work (Fig. 1), individual cytokines were below the limit of 
quantitation 0–100% of the time, and subjects on average had 20% of their cytokines below the limit of 
quantitation, in line with others’ observations with this assay19. Useful information is still contained within these 
measurements, both through the abundance of the measured cytokines and in the pattern of which cytokines 
are below the limit of detection. We will develop a tailored imputation scheme to handle these censored values. 
Working with the Immunomics core, we will experimentally validate the imputation accuracy of our method 
using Simoa assays with fg/mL sensitivity20. 
Tensor analysis as a universal approach to data integration/fusion 

 
Figure 2. Description of tensor decomposition. (a) Vectors and 

matrices are 1- and 2-mode tensors, respectively. (b) In CP-structured 
decompositions, a tensor is approximated by the outer product of vectors 
representing the variation along each mode. (c) In Aim 1, we will modify 

this process to allow a functional representation of certain modes. 



Tensor-based dimensionality reduction is especially useful for multi-modal data by virtue of (1) more effectively 
reducing the data and (2) separating variation according to the mode over which it occurs9. The latter property 
enables tensor-based analysis as a natural solution to integration or “fusion” of datasets with shared 
modes21,22. Integrative analysis of datasets is a common challenge, and a variety of solutions have been 
proposed21–26. Tensor-based dimensionality reduction has several unique benefits over alternative approaches. 
First, as a linear method it is eminently interpretable, and can be readily interpreted by non-practitioners with 
effective visualization tools. Second, as a purely data-driven approach, its analysis results are pure reflections 
of the collected data and consequently not susceptible to problems in biased characterization of biological 
pathways and other prior knowledge. Finally, the algorithmic simplicity of the methods mean that they are 
readily extensible and can be integrated with other modeling modalities (e.g., Aim 1B). As we explore in recent 
work, while variable selection methods like LASSO or elastic net can be used to build predictive models, the 
variables selected by these models lose significance when variables are highly correlated, as is often the case 
with biological measurements10. Consequently, dimensionality reduction is essential to try and make 
mechanistic inferences about large-scale data. In this proposal, we will extensively employ these benefits to 
integrate data across several different modes. We expect that demonstrating these strengths will considerably 
broaden the application of these methods for data integration efforts. 

 
Figure 3. Tensor-based dimensionality reduction improves modeling of systems serology measurements and integration 
of biophysical and glycan profiling. A) General description of the data. Antibodies are first separated based on their binding to a 
panel of disease-relevant antigens. Next, the binding of those immobilized antibodies to a panel of immune receptors is quantified. 
Other molecular properties, such as glycosylation, may be quantified in parallel in an antigen-specific or -generic manner. These 
measurements predict both disease status and immune functional properties. B) Overall structure of the data. Antigen-specific 
measurements can be arranged in a three-dimensional tensor wherein one dimension each indicates subject, antigen, and 
receptor. In parallel, non-antigen-resolved measurements such as quantification of glycan composition can be arranged in a matrix 
with each subject along one dimension, and each glycan feature along the other. Although the tensor and matrix differ in their 
dimensionality, they share a common subject dimension. The data are reduced by identifying additively separable components 
represented by the outer product of vectors along each dimension. The subject dimension is shared across both the tensor and 
matrix reconstruction. C) Percent variance reconstructed (R2X) versus the number of components used in CMTF decomposition. 
D) CMTF reconstruction error compared with PCA over varying sizes of the resulting factorization. The unexplained variance is 
normalized to the starting variance. Note the log scale on the x-axis. CMTF consistently led to a similar variance explained with half 
the resulting factorization size compared with PCA. For example, as indicated by the arrow, to obtain a normalized unexplained 
variance of 0.45, PCA required ~2,048 values, and CMTF needed only ~1,024 values. E) The overall and matrix- or tensor-specific 
R2X with varied relative scaling. F) Percent variance predicted (Q2X) on imputation. From Tan et al, Mol Sys Biol, 2021. 
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Data Sharing Plan: All analysis by the Meyer lab is performed with code and data openly available before 
publication on Github. Data and code repositories will be designed following FIAR guiding principles, such that 
both are available and readily reusable for other efforts. For instance, data will be linked to deposition 
identifiers and metadata available in documented, searchable form. Deposition of code and data will be 
performed upon publication working with the BDM Core. The Meyer lab is a core developer of TensorLy, an 
open-source Python package for tensor learning, and will make methods advancements available there27. 
Approach 
The core will operate as a hub of data integration and exploration across the cores/projects and has three Aims 
with this in mind. Beginning with a subset of preexisting data28, the core will lead development of new methods 
for data integration and deriving multi-modal patterns across longitudinal studies. These will be applied as the 
CA cytokine profiling is completed to identify common patterns within and between CA and MRSA infections 
and their outcomes. Finally, the core will work closely with each project in select multivariate and predictive 
modeling tasks, integrating the basic studies and clinical measurements. 
Aim 1. Evaluate the integrated longitudinal determinants of CA outcome 
Motivation: A complete picture of CA infection requires integrating the available data, which includes 
measurements of both cytokine and gene expression response. Longitudinal samples additionally provide 
unique information about the dynamics of response. A tailored approach toward dimensionality reduction of 
these data will help to reveal those patterns that are predictive of infection outcome. 
Aim 1A: Integrate proteomics and gene 
expression through a continuous mode 
coupled tensor decomposition 
To start, we will work with the pre-existing 
transcriptional data of the CA infection cohort28. 
Briefly, 48 subjects with CA infection had blood 
drawn at admission and longitudinally thereafter. 
PAX genes were derived from those samples and 
submitted for RNAseq. 319 samples were 
successfully analyzed, or roughly 7 per subject 
(GSE176262). Gene expression will first be 
reduced into co-expressed modules by WGCNA29. 
Serum samples are available for these samples, 
and cytokines will be profiled (Project 3). We will 
start with analysis of the expression data and then 
integrate the cytokines as that data becomes 
available (Fig. 4). 

Representing some tensor modes as 
continuous functions instead of vectors allows for 
a more flexible alignment of samples along that 
mode. While standard tensor-structured data 
mandates that samples be measured at matching 
positions, we will generalize our approach to allow 
samples to be unaligned. To start, we will still 
store a dataset as a multi-dimensional array, with one dimension of that array representing the continuous 
mode (for simplicity’s sake we will assume this is time). With traditional tensor structure, there will be many 
positions with missing values due to samples being measured at unique times (Figs. 4 & 5). We will store the 
time value for each sample as a separate vector. The factorization process will overcome missing values 
through key adjustments. 

To allow a continuous representation of time, we must first extend current decomposition methods. Tensor 
decompositions can be calculated using a variety of schemes. They most generally fall into alternating least 
squares (ALS) methods, wherein the best fit along each mode is calculated iteratively, or direct fitting (DF) 
methods wherein the overall quality of the fit is optimized using traditional optimization. Each approach is better 
suited to certain situations. For example, ALS can be extremely efficient, accurate, and avoid local minima9. 
However, ALS can become trapped in fitting “swamps” wherein all the factor modes are highly interdependent, 
partly alleviated by line search schemes30. DF is simple to implement and can benefit through use of standard 
optimization methods31,32. However, it can be slower to obtain accurate fitting results and more easily becomes 
trapped in local minima. Because of these tradeoffs, it is helpful to investigate both approaches. 

 
Figure 4. Layout of the CA cohort. A) At least 48 subjects have 
previously been profiled for their PAX gene expression. The same 
samples, along with a wider panel, will be profiled for their cytokine 
abundances. Subjects have longitudinal sampling, with an average 

of 6.6 samples per subject, and so time will be included as an 
additional mode. B–C) We will compare constructing the effect of 
time using a curve for each component, versus a linear dynamic 

system. The latter will allow us to infer dynamic influences between 
components (C). 
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We will implement both the ALS and DF methods for continuous 
representations of a decomposition mode. For DF, this simply 
requires changing the optimization variables of the continuous mode 
to be the variables representing the mode’s curve rather than the 
individual mode positions themselves. To provide the same 
implementation for ALS, we will replace the factor solving step along 
the continuous mode. Briefly, during ALS the data tensor is unfolded 
along the given mode, and the decomposed representation of the 
other modes is calculated using the Khatri-Rao product. The new 
factors for the mode of interest are then solved using linear least 
squares. Two steps must be replaced to accomplish our goal: First, 
during the Khatri-Rao product we must build a standard matrix 
representation of our continuous dimension by calculating the value 
of the curve at each point. Second, during ALS solving for the 
continuous mode we will use standard non-linear minimization rather 
than linear least squares solving. Solving the other modes in ALS will 
be largely unchanged. The factors representing the continuous mode 
can be discretized by solving for the factors value at each position. This allows one to derive the Khatri-Rao 
product and perform least-squares solving along those modes. During the tensor unfolding, missing values due 
to the time mode will constitute an entire column of the matrix; those columns can therefore be removed from 
the least squares solving in ALS without affecting the result. 

We will verify our method is correct in a couple ways: (1) We will check that during each iteration of fitting 
the quality of the fit strictly increases. (2) We will generate synthetic data, with varied amounts of error 
introduced, and verify we can recover a correct representation. Next, we will compare each method’s 
performance. Both approaches will be tested with synthetic data of varied size, mode number, rank number, 
degrees of cross-mode correlation, and missing values fractions. These benchmarking results will help others 
apply our extension themselves and ensure we fully understand the situations in which either ALS or DF is 
better given their tradeoffs, alongside any complications introduced by the continuous mode. 

As an application of our method, we will factor the CA data to discover consistent patterns across both the 
cytokines and gene expression modules. For the continuous representation of time, we will use a four-
parameter logistic curve. This provides a flexible representation of trends over time, while enforcing a 
unidirectional effect over time for each component. We have used it to successfully represent trends in 
serology responses over time10,33. Longitudinal trends that are not 
unidirectional can still be represented through the effect of multiple 
components. As the tensor decomposition process simply maximizes 
the variance explained, the scaling between the gene module and 
cytokine data influences which variance is explained first (Figs. 3E & 
4). Therefore, in all subsequent analysis we will vary this scaling to 
maximize a modeling property, such as predicting clinical outcomes. 
Finally, to evaluate the benefit of our decomposition approach, we will 
evaluate: (1) The data reduction possible with our approach, compared 
to the data in “flattened” matrix form (Fig. 3D). (2) The influence of 
scaling on explaining each of the data types (Fig. 3E). (3) The ability of 
our approach to impute missing values (Fig. 3F). Each of these will 
help to confirm that our dimensionality reduction successfully captures 
meaningful patterns within the data. 
 

Aim 1B: Express longitudinal dynamics as a dynamical system to 
infer regulatory component interactions 
Dynamical systems are uniquely helpful for identifying regulatory 
interactions from dynamic measurements17,34,35. However, their use 
can be challenging with omic-scale studies because there is 
insufficient power to determine how individual species influence one 
another. Dimensionality reduction provides a solution to this by working 
in terms of correlated patterns rather than individual molecules. Using 
the tools developed above, we will link these two approaches. 

To integrate dynamical systems analysis with tensor decomposition of the molecular factors, we will 
instead express the time dimension as a linear dynamic system, with a starting factors vector and matrix that 

 
Figure 5. Illustration of the problem. 

Traditional tensor decompositions require 
that data be arranged into a single 

multidimensional array. However, longitudinal 
studies typically involve samples measured 

at unaligned timepoints. Binning these 
samples (top) leads to inconsistent coverage 

and loss of time resolution. A continuous 
latent dimension instead takes advantage of 
the non-alignment for better resolution and 
allows one to force the factors to represent 

consistent trends. 

 
Figure 6. Consistent dynamic trends 
exist in the immunologic response to 

CA infection. Samples are derived from a 
single subject with CA infection that 

eventually resolves. Each color indicates 
the prediction output of a multi-class logistic 

regression model predicting the type of 
infection sample. As CA resolves, the 

subject’s samples transition to classified as 
healthy. From Steinbrink et al, Genome 

Med, 2021. 



defines the time evolution of the system (Fig. 4B/C). As above, solving for the other modes of the tensor 
decomposition can proceed as usual, since the time factors can be arranged into a standard matrix. The time 
factor can then be solved using standard fitting approaches for dynamical models17,35. Fitting will be performed 
for the time dimension by optimizing the overall sum of squares error for the tensor reconstruction. Solving the 
linear dynamical system will be performed using the matrix exponential36. The gradient of the time factor with 
respect to the unknown initial vector and system matrix will be derived using Jax37. This quantity will then be 
transformed into an expression for the overall fit with respect to the unknown parameters using an analytical 
expression for the gradient of the sum of squared error, based on the n-mode unfolding times the Khatri-Rao 
product22,32. 

We will compare this formulation of the continuous mode to the previous one in its (1) extent of data 
reduction (Fig. 3D), (2) imputation performance for held-out data (Fig. 3F), and (3) the stability of the factors 
upon bootstrapping the subjects10. We expect an improvement in all these quantities due to the improved time 
factor expressiveness. Factor interactions revealed by this analysis will be validated in collaboration with 
Project 2. For instance, a component A may represent a high abundance of IL-17A early in infection and 
component B a high abundance of neutrophils. This analysis would provide the inference that component A 
directly contributes to an increase in B. We could then test this using an antibody to deplete IL-17A and then 
immunophenotyping. 
Aim 1C: Test for association between CA immunological trajectories and mortality 
We hypothesize that, while single snapshots of each subject are likely predictive, the dynamics of CA infection 
contain unique information that improves predictions of whether one mounts a successful immune response 
(Fig. 6). To test this, we will build a model using the subject factors derived in Aim 1A & B that explain both the 
gene expression and cytokine data. Whether a subject ultimately resolves or succumbs to their infection will be 
predicted using a logistic regression classifier with the subject factors as input and outcome (mortality versus 
resolution) as the predictor. The prediction accuracy of the model will be assessed by a receiver operator 
characteristic (ROC) curve using 10-fold cross-validation. As mentioned above, in the coupled factor analysis, 
the relative scaling (and thus priority in explaining the data) between the gene expression and cytokine data is 
a parameter of the model, and so this will be adjusted to maximize prediction accuracy. With a predictive 
model, we will inspect the coefficients of the logistic regression model to determine which factors are 
associated with outcome. Variation in the coefficients will be quantified by bootstrapping. Associations with 
isolates’ phenotypic features from Project 2 will be evaluated in a similar manner (see Aim 3). 

The entirety of the data is almost certain to predict outcome effectively, because many samples were 
collected long after admission, where subjects were already resolving or progressing in their infection. 
Therefore, several additional model inquiries are necessary to confirm the specific value of the longitudinal 
information. First, we will repeat the steps above using factors derived from a progressively earlier subset of 
the data. For example, rather than factor the data with all samples, we will only take samples at least 2 days 
prior to mortality or resolution, 5 days prior to mortality or resolution, etc. We expect that removing later 
samples will reduce but not eliminate the model’s ability to predict outcome. A reasonable intermediate cutoff 
will be determined where most of the model’s predictive ability is retained but predictions are made for 
outcomes observed at least a week into the future. This will reenforce that the model is able to distinguish 
differences in immunological response that determine outcome. 

Finally, we will test that longitudinal dynamics play a significant role in predicting infection outcome. To do 
so, we will compare outcome predictions with our dynamics-aware model to those derived from two different 
baselines: First, we will build a corresponding principal component analysis (PCA) and logistic regression 
model predicting outcome using either the first sample on admission, or alternatively the last sample used in 
the full model above. By representing each subject with one sample time point, we remove dynamics as a 
feature the model can use to predict outcome. Second, we will shuffle the timepoints in the full model, so that 
the overall approach is the same, but the signal of sample ordering is no longer available. We expect that both 
these models lacking dynamics information will be less predictive of outcome, indicating that dynamics is 
important to predicting infection outcome. 
Expected results: We expect to find that the integrated molecular signatures can predict both the persistence 
and mortality of CA infection. Furthermore, the dynamics of response to CA infection and integrating both data 
types will help to predict these clinical parameters more accurately. Finally, we expect that arranging the 
samples in tensor form will (1) reduce the measurements to a greater extent, (2) effectively separate the 
contribution of subject-to-subject differences, dynamics, and each measurement, and (3) more accurately 
represent the data (quantified through imputation accuracy). 

Within the factors, we expect to find several known patterns of CA response. First, the response of 
peripheral blood cells to CA is defined by TLR and interferon (IFN) responses38. While all the samples in this 
Aim will have disseminated infections, we expect they will vary in this response signature due to variation in the 
severity of infection. Resolving samples should also smoothly transition to a healthy state (Fig. 4)28. 



We expect that there will be clear correspondence between the transcriptional and cytokine signatures for 
those components that primarily explain cytokine variation. To evaluate this, we will test for correlations 
between the transcriptional factors and CytoSig, a database of known transcriptional cytokine signatures39. We 
will quantify which components have a significant correlation with each signature (Spearman correlation with 
permutation test) and, in the presence of such an association, whether there is the expected weighting of that 
cytokine in the cytokine factors. Agreement between both data sources will be compared to the amount of 
agreement with the factors shuffled. 
Synergy with other Aims and Projects: Aim 1 lays the groundwork for an integrated representation of CA 
infection. This representation is used throughout Projects 2 & 3 as a basis of comparison for their findings. 
This data integration is built upon in Aim 2, with the integration of MRSA cohort samples. In Aim 3 findings 
from in vitro and mouse studies are compared to these patterns. Working with Project 2, we will have the 
opportunity to validate the mechanism of key interactions we identify in Aim 1C.  
Alternative approaches: We do not anticipate challenges in implementing this Aim. The approach taken here 
is very similar to that applied in our preliminary analysis integrating gene expression and cytokine 
measurements to predict MRSA persistence (Fig. 1). There, we have been able to observe that our approach 
improves outcome prediction and effectively identifies patterns across both datasets. We also have extensive 
experience with this and alternative data-driven approaches10,17,40. If, for some unanticipated reason, the 
continuous mode approach is not possible, we can always use timepoint binning (Fig. 5). 

Like PCA and other matrix decomposition methods, tensor decomposition can also be used to impute 
missing values31. Therefore, we will keep track of missing values within the study and adjust our dimensionality 
reduction approach based on the extent and pattern of missingness. 

We will similarly keep track of the batch properties of experiments and monitor the extent to which our 
reduced data reflects study design patterns. Like PCA, tensor-based dimensionality reduction can help to 
separate batch effects from other variation in the data12. If batch effects appear within many components of our 
decomposition, we can directly correct for batch effects using standard, well-developed methods41.  

Dimensionality reduction can become challenging to calculate at extreme scales. While we do not expect 
challenges at the scales proposed in this study, a variety of solutions exist to improve algorithmic scalability if 
this were to become an issue. These include line search routines to improve convergence30; streaming and 
batching methods to work with data that is larger than can be loaded into memory42,43; problem conditioning 
like orthogonalization44; and alternative algorithms to trade-off accuracy, scalability, and convergence speed45. 
Aim 2. Identify shared and distinct molecular and cellular patterns across MRSA and CA 
Motivation: The commonalities between MRSA and CA infection and their occasional co-isolation suggest a 
shared immunologic niche. We will examine the common molecular patterns across both cohorts, and test for 
their association with outcome and other clinical parameters.  
Aim 2A: Improve factorization of clinical cytokine panels 
A common challenge with proteomic cytokine analysis is that many samples can be below or above the limit of 
quantitation (LoQ). This means that, while we know the cytokine amount in that sample is below or above a 
known value, we do not otherwise know its quantity. Common approaches, such as filling in the LoQ boundary 
value, introduce bias to the data. While this may not be an issue with a small number of such values, it is 
common to have cytokines with half of their values outside the LoQ in multiplexed cytokine samples. Sample 
and resource limitations preclude experimental solutions like more sensitive technologies20. 

To investigate solutions to this problem, we will use a series of cytokine panel measurements made from 
MRSA infection subjects. This dataset is an excellent testbed for several reasons: (1) The LoQ is a known 
confounder in the data. The cytokine measurements were made across two independent cohorts, where the 
LoQ was different for each. As a result, the cohorts subtly separate along certain components during 
dimensionality reduction (Fig. 1, e.g., component 1). We can therefore directly examine whether this 
confounding effect is resolved. (2) Many of these samples are still available within the Immunogenomics 
Core, and so we will use the single-molecule quantitation technology Simoa as a more sensitive assay to 
experimentally validate that we are correctly imputing even the censored cytokine amounts20. (3) Many 
subjects had both their plasma and serum analyzed in parallel, sometimes with differences in the LoQ or the 
abundance of the cytokine. As a result, the dataset provides a testbed in which the inference process is 
optionally made simpler by having information about each individual subject (captured within the tensor 
arrangement of the data; Fig. 1B). 

To correct for the LoQ effect, we will modify our cytokine factorization process. Like in previous work, we 
will factor these data as a 3-mode tensor, with modes representing cytokine, subject, and whether samples 
were derived from serum or plasma (Fig. 1B). 9 components can explain roughly 80% of the data variance 
using standard CPD (Fig. 1). We will modify the ALS fitting process by updating the values in the cytokine 
tensor after each iteration of ALS. Two separate tensors, L and H, will have NaN values anywhere a cytokine 
falls within the range of quantitation or is missing. If a cytokine is below the range, the L tensor will store the 



LoQ and H will have a NaN value. Cytokines above the LoQ will have the limit stored in H and L will have a 
NaN value. Using these, the cytokines falling outside the LoQ will be updated by filling in their values with 
those predicted by reconstructing the data tensor. Iterative filling is a common technique for missing and 
censored value handling. After filling in the value, these values will additionally be adjusted based on the 
information we do know about their quantity. If the filled value is above the LoQ for a cytokine that was below 
the LoQ, for example, we will update the value to be the LoQ. In this way we will fill in the values with the best 
inference given what we know about the factors and how these values fell outside the LoQ. This expectation-
maximization process will proceed until convergence. 

We will test this new approach to cytokine factor analysis in several ways. First, this updated process will 
free the latent factors from having to explain variance due to cytokines below the LoQ being held exactly at the 
LoQ (Fig. 7A). Therefore, we expect that fewer components 
will be needed to explain the same amount of variation in the 
dataset. Second, we expect this improvement will enhance 
our ability to predict unseen cytokine abundances. To test 
this, we will remove random cytokine-subject measurements 
and test the ability of the factorization process to impute 
these values (Fig 3F)10. We expect this imputation error will 
be reduced when properly accounting for the LoQ. Finally, we 
expect that the cohort-to-cohort difference seen in some 
factors (e.g., cohorts 1 versus 2 in components 1 and 2 in 
Fig. 1C) will be removed by no longer holding many values at 
the LoQ. This is because, as illustrated in Fig. 7A, the LoQ 
differs between cohorts, and therefore produces a series of 
values that differ in a cohort-specific manner. We will test for 
cohort-to-cohort differences using a Kruskal–Wallis test with 
each component and expect any components that are 
significantly difference between cohorts will no longer have 
such a difference with this enhancement. 

With a cytokine factorization method fully developed, we 
will apply this approach throughout the study, including with 
the CA cohort and methodological improvements in Aims 
1A/B. As experimental validation of our approach, we will also 
identify cytokines with consistent inferred variation in 
abundance below the LoQ (uncertainty quantified by 
bootstrapping subjects). Working with the Immunogenomics 
Core we will experimentally validate the variation in three 
cytokines by measuring their abundance in 20 subjects’ 
samples by Simoa20. We expect to find quantitative 
agreement between the inferred and measured cytokine abundances as quantified by the Pearson correlation 
between the inferred and measured abundance, only for those samples below the LoQ for the multiplexed 
assay. These computational and experimental validation tests will demonstrate that this is a generally valuable 
approach for multiplexed cytokine analysis. 
Aim 2B: Integrate MRSA and CA transcriptomic, methylation, and cytokine measurements 
With an improved approach for cytokine factor analysis, we will then apply decomposition of the transcriptomic 
and cytokine data across both MRSA and CA. Decomposition will be applied using the same ALS approach as 
we previously used for more typical tensor-matrix factorization10,22, but with coupling between five sets of axes 
(Fig. 8). First, the subject patterns will be constrained to be shared across cytokine and transcriptomic datasets 
within each cohort. Next, the cytokine patterns of each decomposition component will be shared across the 
MRSA and CA studies. Finally, the gene module and methylation patterns will be shared across the MRSA and 
CA studies. Coupling is accomplished by solving the least squares step along that mode using a concatenation 
of the two coupled datasets10,22,31. 

Dataset coupling introduces a necessary new free parameter in how the resulting factors are derived (Fig. 
3E & 8). Because the factorization process minimizes the sum of squared error, the relative scaling between 
datasets changes the amount of variance explained by the factorization process. For example, one could make 
the scaling of the cytokine measurements much larger than the gene expression data. In this case, the derived 
factors would be almost entirely dependent on the cytokine measurements alone, and the variance explained 
in the gene expression would only be whatever happens to correlate with the cytokine data. In practice, 

 
Figure 7. Illustration of limit of quantitation effect 

within the MRSA dataset. A) Plot of IL-1a abundance 
for a subset of the MRSA subjects, one of the 

cytokines with the most values below LoQ. Note the 
log axis. The lower limit of quantitation is different 

between two cohorts because the samples were run at 
separate times. Because many subjects are set to the 
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Limit of quantitation

A

B

Lo
g(

IL
-1

a 
[p

g/
m

L]
)

IL
-9

 [p
g/

m
L]

IL-1a [pg/mL]



however, we generally want to derive factors that are a function of both datasets. To explore the effect of 
scaling, we will vary the study-to-study scaling and the relative cytokine and gene expression scaling (Fig. 3E 
& 8). Scaling values will be picked such that the resulting factors are responsive to both datasets. We can also 
elect to identify a scaling factor that maximizes resulting predictions of infection outcome. 

We expect that coupled dimensionality 
reduction will show that there are shared 
component patterns across the datasets. To 
verify this, we will compare the size of the 
resulting reduced data when factored in coupled 
form versus when each dataset is reduced on 
its own. That is, we will break each coupling so 
that we have six individual tensors, and then 
approximate them using CPD individually. By 
calculating the percent variance explained 
(R2X) and factorization size for each dataset, 
we can produce a plot indicating the 
effectiveness of the dimensionality reduction 
(Fig. 3D). This will then be compared to the R2X 
and size of the reduction achieved in coupled 
form. We expect that greater reduction can be 
achieved in coupled form because the coupled 
factors matrices are reused and thus not 
duplicated across datasets. A second way in 
which we will verify that there are shared 
coupled patterns is by permuting the positions 
of the coupled mode in one of the datasets. For instance, we will permute the positions of the subjects only 
within the gene modules tensors. This preserves the data, as the ordering of the subjects is arbitrary, but 
breaks the subject associations between the cytokine and gene modules measurements. We expect that this 
will lead to a striking reduction in the effectiveness of the dimensionality reduction. The same process can be 
performed with the ordering of the cytokines or gene modules across studies. 
Aim 2C: Identify pattern associations with age, sex, infection outcome, and isolate properties 
With a reduced representation of all the molecular data, we will then test for associations of the subject factors 
with subject age, sex, and infection outcome. Sex and infection outcome will be predicted from the molecular 
data factors using regularized logistic regression. Age will be predicted using regularized least squares 
regression. Infection outcome will be a binary outcome, indicating infection persistence (see Project 1) in 
MRSA, and mortality (see Projects 2 & 3) in CA. The models will be separately constructed for MRSA and CA 
in case there are distinct factor-to-output relationships. However, we will still be able to identify common 
regulatory events through the model weights. 

The prediction models will be evaluated in several ways. First, the predictive accuracy of the models will be 
evaluated using 10-fold cross-validation. Briefly, 10% of the subject factors will be left out of the data, and the 
model will be built to identify factor-output associations. The model predictions will then be derived for the left-
out data using the molecular factors. This process will be repeated until each subset of data has been 
predicted. Prediction accuracy will be quantified using the area under the receiver operator curve (AUC). As 
described above, in addition to the regularization strength of the prediction models, we will adjust the two 
scaling factors within the coupled decomposition, and the number of factored components, to maximize the 
prediction AUC. Separately, the variance in the prediction-to-factor component associations will be quantified 
by bootstrapping the subjects. In total, these activities will help to identify robust associations between the 
factor components and outcome/clinical properties. As the factors are shared, the factorization process 
naturally allows us to identify shared associations across molecular measurements and infection types. 
Expected results: We expect to find that the experimental and computational validation will show that our 
factorization-imputation scheme in Aim 2A will more accurately summarize the patterns found within proteomic 
cytokine profiling and can impute the abundance of cytokines below the LoQ. In Aim 2B, we expect to find 
consistent, multi-omic and pan-cohort patterns of immunologic response across CA and MRSA infection, as 
well as across measurement modalities. Evidence of this will include the extent of dimensionality reduction, our 
comparison to an independent dataset of cytokine transcriptional response, and permutation experiments. We 
expect that a subset of these patterns will be associated with age, sex, infection outcome, and isolate 
properties (Fig. 1). 

Synergy with other Aims and Projects: Aim 2 produces a fully integrated view of CA and MRSA infections, 
identifying their shared and unique patterns. As outlined more within Aim 3, every Project will use this as a 

 
Figure 8. Diagram of the factorization layout and coupling. Both 

the MRSA and CA data are structured as described above. The MRSA 
cytokine tensor includes slices from serum and plasma samples. All 
three CA data types include a third dimension representing time. The 

datasets are coupled such that the cytokine, gene expression, 
methylation, MRSA subject, and CA subject factors are shared. Data 
coupling introduces three scaling factors, which influence the scaling 

between data types and between the cohorts. 
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basis of comparison for the molecular patterns found within human infection. Aim 2.1 additionally leverages the 
unique capabilities of the Immunogenomics Core to experimentally validate the methodologic advancements. 

Alternative approaches: The data integration here differs from our preliminary and previously published 
analysis only in its scale (Fig. 1)10, and so we do not anticipate challenges in its execution. However, if, for 
example, it became difficult to factor all the data in a combined form, we could factor each tensor individually in 
uncoupled form (Fig. 8). Patterns between each dataset could then be linked by looking for correlations 
between the factor matrices. Another possibility is to apply a tensor-based partial least squares regression 
technique46,47. Rather than maximizing the variance explained within the molecular data, this would maximize 
covariance with between the data and prediction of interest. Doing so would reduce the number of components 
needed to make each prediction, although different factors would exist for each prediction. 
Aim 3: Integrate outcomes from experimental models and human infection 
Motivation: As the last part of its data integration role, the CPM core will help with the multivariate analysis of 
data throughout the projects, along with their integration with clinical and immunologic profiling. 
Methodology: Details of several methods used by the CPM core throughout the projects are outlined here. 

For several applications we will employ principal component (PC) analysis (PCA). This is a 
dimensionality reduction technique that finds the principal directions of variation within a dataset. An 
associated benefit of this reduction is that the PC patterns are orthogonal, often aiding downstream analysis. 
PCA can be extremely effective at dimensionality reduction, particularly for biological data that tends to have 
highly correlated measurements. To examine the optimal number of PCs for our analysis, we will examine the 
variance reconstructed (R2X) by the method with differing numbers of components. PCA is most effective 
when a small number of PCs explain a large fraction of the variance. 

A second method we will apply is partial least squares regression (PLSR). This is a supervised method, 
meaning it can be used to make predictions of a certain quantity given training inputs. In contrast to PCA, 
which maximizes the variance explained in an input dataset, PLSR identifies components that maximally 
explain the covariance between the input and predictor datasets. By performing dimensionality reduction 
during the process of model construction, PLSR can provide accurate predictions in situations where there are 
a greater number of input variables than samples. Like PCA, it is highly effective for biological data wherein 
many input variables tend to be highly correlated. We will plot the loadings of PLSR models to identify the 
relationships between input variables and output predictions of interest. The scores of the PLSR model can 
also be used to identify how samples are related to these input variables. 

We will use cross-validation to estimate the predictive ability of our modeling efforts. Briefly, a subset of 
the data will be held out during the model building process, and the model will be fit to the remaining data. The 
model will then be used to predict the outcome of interest using the held-out samples’ input values. The 
model’s predictions will then be compared to the actual, held-out answers. This process will be repeated with 
subsets of held-out data until all samples have been held out once. Cross-validation is critical to prevent model 
overfitting, wherein a model is tailored to the exact training dataset, rather than identifying generalizable trends 
that can be used to predict new samples. Therefore, model parameters, such as the number of components 
used within PLSR, will be determined by minimizing the cross-validation-estimated prediction error. However, 
this model adjustment approach can lead to model bias because the model parameters are adjusted in a 
dataset-specific way48. To ensure this is not a problem, we will employ a nested cross-validation strategy, 
where model parameters are set within a second cross-validation process, where needed. 

To examine the variation in outputs for any of the modeling techniques, we will use bootstrapping. Briefly, 
this is a method that effectively simulates how a model would change if an entirely new replicate of the current 
dataset were produced. This is accomplished by resampling the independent replicates of the dataset, with 
replacement, to generate a new dataset with some entries duplicated and others removed. This technique can 
be applied to any model output, including graphical plots, and enables hypothesis testing using model outputs. 

Where a multi-modal structure exists in our data (Fig. 2), we will apply canonical polyadic (CP) 
decomposition (CPD), also known as Parallel Factors Analysis (PARAFAC). Decomposition will be performed 
using TensorLy27, using ALS and line search. Factors will be normalized after factorization such that each 
component has variance of 1, and sign indeterminacy will be corrected by ensuring all but one mode is positive 
on average9. Finally, we will variance-order the components so that there is a consistent ordering of the 
factors. Where applied, our tensor approach will be justified by examining the imputation error and extent of 
dimensionality reduction compared to PCA (Fig. 3D/F)10. 

In both Projects 1 and 2, we will need to identify a subset of isolates for deeper investigation. To do so, we 
will take a variation-maximizing subsampling approach. The initial profiling of all isolates will be used to 
visualize the panel of isolates in PCA space. A subset of isolates will be chosen so that they are spread out in 
PCA space for each clinical outcome. In this way, we will ensure that the subset of isolates chosen retain the 
phenotypic diversity of the original cohort. 
Aim 3A: Identify interactions between MRSA epigenetic plasticity & murine/human immune responses 



We will work closely with Project 1 to use multivariate analysis to address each of their hypotheses. To start, 
one of the initial goals of Project 1 is to profile phenotypic, genotypic and epigenotypic characteristics of 
persistent and resolving MRSA isolates in a panel of environments, including the cellular, serum, and plasma 
fractions of human blood. Briefly, previous work from our group found that host molecular measurements could 
be predictive of bacterial persistence, but that standard lab cultures did not differentiate the outcomes of 
infection3,5,7. With the hypothesis that alternative environments can improve the ability of diagnostic cultures to 
predict persistence, we will examine the colony formation of 75 persistent and 75 resolving strains across the 
culture environments. 

We expect a high degree of strain-to-strain and condition-to-condition correlations. For instance, certain 
strains will be susceptible to vancomycin (VAN) across all environments, and certain conditions might hinder or 
promote growth across all strains. Therefore, to explore these data in a multivariate way, we will examine the 
colony responses using PCA. Colony counts will be log-transformed and centered before dimensionality 
reduction. We expect that a small number of PCs will be able to capture >90% of the dataset variation and help 
to visualize these multivariate patterns. PCA will also help us identify a subset of strains to select for further 
analysis that have representative responses among the overall pattern, by helping to visualize the overall 
response patterns across each culture environment. 

Next, we will use discriminant PLSR (dPLSR) to determine whether the colony response behaviors can 
predict resolving versus persistence status. (dPLSR is simply PLSR using a binary predictor variable). We 
expect to find that the confluence of colony responses will be able to predict resolver status more accurately 
than responses in the standard assay conditions alone. In parallel, we will also evaluate the ability of each 
culture condition to predict resolver status on its own using logistic regression. We expect that certain culture 
conditions will also be able to predict resolver status better than standard lab diagnostic conditions. Comparing 
dPLSR and logistic regression will allow us to determine to what extent predictions can be made more 
accurately by combinations of response patterns across conditions. 

Also in Project 1, we will help with the multi-modal analysis of the in vivo treatment interventions. Briefly, 
four proposed interventions for overcoming VAN persistence will be applied, across a panel of strains, with or 
without VAN treatment, with mouse replicates in each group. At the end of each experiment mice will be 
sacrificed and the colony forming units (CFU) of several tissues will be quantified. To help visualize the 
variation among these data, we will arrange it into a four-mode tensor (VAN treatment, strain, intervention, 
tissue site). The data will be averaged across replicates, centered and variance scaled across all other modes 
within each tissue site. We will use CPD to reduce this data into component patterns and visualize its variation. 
As described above, we will compare the extent of dimensionality reduction as validation of our tensor 
approach compared to PCA and adjust our approach if needed. Uncertainty in the resulting factors will be 
quantified and visualized by bootstrapping. 

In Project 1, Aim 3, we will help explore the broad profiling collected through multi-modal tensor analysis. 
Briefly, the host response to infection will be collected at early and late timepoints, across a series of isolates, 
in six tissues, for both sexes, with and without VAN treatment, with animal replicates, using a series of 
molecular profiling technologies. We will arrange this data into a multi-modal (time, isolate, tissue, sex, VAN, 
molecular measurement) tensor. Measurements will be averaged across animal replicates, and then centered 
and variance scaled across conditions for each measurement. We will then reduce this data into component 
patterns using CPD, comparing the extent of dimensionality reduction to that achieved with PCA. Uncertainty in 
the resulting factors will be quantified and visualized by bootstrapping. Given that the data reduction is 
unaware of the resolving status of the isolate strain, and we expect that the data will be explained by a 
relatively small number of component patterns, we will be able to look for patterns that show a difference in 
abundance between persister and resolver status, even among a small number of isolates. These molecular 
signatures can then be compared to those in Aim 2 where we identify human subjects patterns. 
Aim 3B: Characterize interactions between CA phenotypic and immunologic response features 
Working with Project 2, we will help to explore the variation among CA isolates, and how this variation relates 
to their genomic features and the immune response to infection. Like Project 1 does with MRSA, an initial 
focus of Project 2 will be the phenotypic characterization of CA isolates. Each isolate will be profiled in a 
variety of ways within Project 2, Aim 1, including: growth rate, anti-fungal susceptibility, filamentation, biofilm 
formation, pathogen-associated molecular patterns (PAMPs) expression (through staining), invasion and 
damage of the endothelium, and genomic features as quantified by the BDM core. We expect that many of 
these behaviors will be correlated or anti-correlated and will therefore explore the phenotypic variation by PCA. 
Associations with mortality and infection timepoint (to look at adaptation) will be explored by PLSR. We will 
also identify correlations between the properties here and the isolate factors in Aim 2B. (Per-isolate factor 
associations can be derived by taking the Khatri-Rao product of the subjects and time factors in Aim 2B9.) 

Projects 2 and 3 will coordinate to measure several whole blood responses CA. Briefly, whole blood from 
2 male and 2 female donors will be used. The CA isolates will be introduced, and cytokine/chemokine 



responses measured. Intracellular cytokine staining will be performed on the exposed cells. CA killing, 
phagocytosis, and survival will be measured. These data will be arranged into a 3-mode tensor, with modes 
representing CA isolate, measurement, and blood donor. We expect that this arrangement will be extremely 
helpful for identifying overall patterns because there will be similar patterns across donors, as well as donor-
specific effects across isolates. The patterns in these data will then be identified and visualized using CPD. 
The in-filling technique from Aim 2A will be applied to accurately model the cytokine measurements. 
Associations with mortality will be explored by logistic regression of the isolates factor matrix. We will also 
identify correlations between the isolate factors derived here and those from Aim 2B. 
Aim 3C: Infer the effects of PAMPs and corresponding trained innate immunity 
Finally, working with Project 3 we will help to model the mechanistic determinants of trained immunity. 
Working with Project 3, we will build predictive models of the presence and function of PAMP/PRR signaling 
within systemic CA patients. To start, we will integrate the measurements in Project 2, Aim 1 that characterize 
the abundance of PAMPs in each isolate. These will be compared to pattern recognition receptor (PRR) 
responses, and the cytokine and gene expression measurements collected in the same subjects (Project 3). 
PLSR will be used to link PAMP abundance to PRR response. PAMP abundance and PRR response will then 
be used to predict cytokine, gene expression, and methylation responses by PLSR. Gene expression will first 
be reduced into co-expressed modules by WGCNA29. 

Separately, we will help to explore the induction of specific enhancer elements by PAMPs, and their 
pharmacologic manipulation by a panel of compounds. Briefly, Project 3 will profile the macrophage (Mf) 
states induced by 10 distinct PAMPs. 5 of these will be selected for more in-depth analysis, where the effect of 
10 compounds is profiled. Mf state will be profiled through open chromatin, methylation, and gene expression 
profiling. The sequencing results will be processed into region or gene summaries by the BDM core. We will 
arrange these data into tensor form for exploration, where the data is represented in 3-mode form (PAMP 
state, drug intervention, measurement). After factorization, each molecular pattern will be related to functional 
responses by regression. We will also test for correlations between each of the gene expression and 
methylation patterns derived here, and those identified within the human subjects in Aim 2B. We will test the 
robustness of derived signatures through bootstrapping across replicates (Project 3) and subjects (Aim 2B). 
Expected results: We expect to find that the more extensive profiling of isolates and their interactions with the 
immune system performed here will reveal properties of the organisms that correlate with persistence and (in 
the case of CA) mortality. We expect that these organismal properties will have correlates with cytokine, gene 
expression, and methylation signatures from Aim 2B reflecting the immune response to these properties. 
Through the analysis in concert with Project 1, Aim 3; Project 2, Aim 2; and Project 3, we will identify the 
mechanistic underpinnings of these molecular patterns, again mapped back to the unified view of human 
infection in Aim 2B. Using predictive models of sex, alongside sex as an experimental parameter, will identify 
signatures that are associated with sex. 
Synergy with other Aims and Projects: Aim 3 connects to every part of each Project in the center. Through 
these activities, the center shares a fully unified approach toward the multivariate and multi-modal analysis of 
molecular signatures. Findings using in vitro and murine model systems will be tested for their representation 
within the human subject cohorts in Aim 2. This unified analysis similarly serves as a bridge and eventually a 
hypothesis-generation engine for common mechanisms of persistence in both CA and MRSA. 

Alternative approaches: As described above in the description of our tensor approach, dimensionality 
reduction can proceed with PCA after tensor-structured data is flattened into matrix form. In each application of 
tensor analysis, we will explicitly justify its structure into tensor form by comparing to PCA. Another possibility 
is to apply a tensor-based partial least squares regression technique46,47. Rather than maximizing the variance 
explained within the molecular data, this would maximize covariance with between the data and prediction of 
interest. Doing so would reduce the number of components needed to make each prediction, although different 
factors would exist for each prediction. 
Timeline & Publication Plan: The CPM core will begin in Year 1 with the methodologic developments in Aim 
1A & 2A, as these can initially rely on pre-existing data from the MRSA and CA cohorts. We plan for each of 
these to be described in methods-focused publications to help promote their wide-spread use. The other parts 
of this proposal will then proceed as the data becomes available. For instance, we expect that the CA cytokine 
measurements would become available in Year 2, to finish the work in Aim 1. Eventually, we anticipate that 
the CPM core activities will be reflected in all the center publications (Aim 3), and that a publication describing 
the fully unified view of CA and MRSA (Aim 2) will be produced in Year 5. 
Power analysis: Power analysis of all studies has been included within the BDM core to allow the CPM core 
to focus on the development and application of innovative systems-level analyses. As described above, we use 
non-parametric methods throughout, including bootstrapping and permutation, to rigorously assess model 
uncertainty. Model prediction will be benchmarked through cross-validation, with nesting where necessary.  
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