
Specific Aims
Antibodies are crucial regulators of the immune response and particularly versatile therapeutic agents
due to their ability to both bind with high affinity and direct the immune system. Indeed, antibodies com-
prise a broad range of approved therapies across disease indications, many of which are known to rely
in large part on immune effector cell response. Those of the IgG isotype interact with FcγRs on effec-
tor cells. IgGs elicit effector response through multiple cell types (e.g., macrophages, monocytes) and
through multiple processes, including removal of diseased cells through antibody-dependent cellular
cytotoxicity (ADCC) or antibody-dependent cell-mediated phagocytosis (ADCP). Many possible design
parameters—constant region composition, FcγRs, cell populations, and antigen binding properties—
make precisely predicting and manipulating effector function an elusive goal.

In a recently published study, we built a model of multivalent immune complex (IC—IgG-antigen
complex) binding to FcγRs and showed that it can capture and predict experimentally measured bind-
ing and effector response of different IC compositions1. This model also predicted anti-tumor effector
response to a single antibody of defined constant region in vivo. Importantly, endogenous IgG re-
sponses are known to rely on antibodies of distinct constant region composition in combination. We
hypothesize that IgGs of identical antigen binding, but different isotype or glycosylation status, can
show synergistic effector-elicited cell killing and that a multi-IgG Fc binding model can effectively iden-
tify these combinations. To identify potentially synergistic combinations of Fc domains, we propose to
extend our model to incorporate binding and effector response of ICs comprised of IgG combinations.
Aim 1: Validate a multivalent binding model’s ability to predict FcγR binding to mixed IgG com-
position immune complexes. Hypothesis: An equilibrium multivalent binding model accurately rep-
resents FcγR interaction with ICs of mixed IgG composition.

• Measure mixed composition synthetic IC binding to cells of defined FcγR expression.
• Generalize a multivalent binding model to account for ICs of mixed composition.
• Fit and verify that the model can predict effector response in vitro.

Aim 2: Map human and murine IgG isotypes to one another according to conserved effector
response. Hypothesis: Murine/human effector response regulation is conserved, even when single
IgG isotypes are not.

• Map IC composition to effector responses by tensor decomposition.
• Correlate murine and human effector responses according to similar cell population response.
• Verify this mapping predicts known, similar cross-species effector cell responses.

Aim 3: Link IgG effects and in vivo efficacy to identify and verify synergistic IgG-elicited cell
killing. Hypothesis: A binding model can identify synergistic effector interactions in vivo.

• Regress single IgG treatments and in vivo cell clearance to identify synergistic combinations.
• Verify predicted cases of synergistic effector response in vivo within models of antibody-
dependent, effector-mediated platelet and B cell depletion.

• Identify the relevant cell populations and mechanisms of synergistic effector response.

This investigation will considerably improve our ability to both engineer IgG with optimal effector cell
killing response and inform how existing therapeutic and endogenous IgGs function. In particular, even
existing monoclonal antibodies are mixtures of Fc compositions due to the cocktail of glycosylation
forms present. A comprehensive view of how IgG Fc interact would therefore (1) improve our ability to
match effector cell-mediated killing during antibody manufacturing, (2) provide insight into the role of
the complex Fc cocktails created during an endogenous immune response, and (3) create the possibility
of engineering logic into effector cell responses through antibody combinations.



Significance
The therapeutic potential of antibodies is demonstrated by their status as a broad class of effective
agents across autoimmune diseases, infection, and cancer. Their versatility is enabled through an
antibody’s selectivity toward target antigen as determined by its variable region, along with the ability
to elicit effector cell responses depending upon the composition of its constant Fc region. Antibodies
of the IgG type direct effector response by binding to the FcγR family of receptors. FcγR activation is
driven by multiple IgG clustering the receptors. Depending upon the configuration of receptors, this
interactionmay promote or prevent effector response. Thus, the mechanism of FcγR activation ensures
that multiple IgG are present whenever eliciting effector response.

One capability elicited by effector cells is clearance of infected or otherwise pathogenic cells. Clear-
ance can occur through two functionally distinct mechanisms: antibody-dependent cellular cytotoxicity
(ADCC) or antibody-dependent cell-mediated phagocytosis (ADCP). However, both mechanisms are (1)
regulated by the family of FcγRs present on effector cells, (2) modulated by the identity of the Fc region
present on an IgG2, (3) performed by multiple cell types3,4, and (4) influenced by properties of antigen
engagement5,6. This multilayered complexity is a central challenge to engineering antibodies with desir-
able cell-killing functions, as well as understanding successful and dysregulated endogenous immunity.
Our team recently demonstrated that a multivalent binding model of immune complex (IC—IgG-antigen
complex) binding to FcγRs accurately captured and could predict in vitro binding across various IgG
isotypes1. Further, it could accurately predict antibody-elicited tumor cell killing in vivo across anti-
bodies of varied isotype, glycosylation status, and FcγR knockout animals1. Directly quantifying and
predicting cell clearance made it possible to accurately predict and optimize for antibody-mediated
cell clearance regardless of whether it occurred by ADCC or ADCP.

Endogenous antibody responses universally involve Fc of diverse isotype and glycosylation in com-
bination. The central hypothesis of our proposal is that antibodies of different Fc composition, but
identical antigen binding, can have properties other than the additive combination of either alone. A
consequence of this is that, within a mixture, minor species (e.g., glycosylation variant) can have an
outsized effect promoting or preventing cell killing. Even when recombinantly manufacturing a single
monoclonal therapeutic agent, heterogeneity exists in the glycosylation forms derived7,8. Knowledge
of how these different forms influence the behavior of one another would allow one to increase or re-
duce cell killing by adjusting the mixture of glycosylation forms. This would also help guide evaluation
of biosimilars by determining whether glycosylation forms present at small fractions might influence
overall therapeutic efficacy. On the side of the effector cells involved in mediating therapeutic antibody
dependent effects, it has become clear that in addition to NK cells (expressing only one activating FcγR
(FcγRIIIA), tissue resident macrophages and bone marrow derived monocytes participate in cytotoxic
antibody dependent target cell clearance. In contrast to NK cells, these myeloid cell subsets express
all activating (excepting inflammatory monocytes lacking human (h)FcγRIIIA or mouse (m)FcγRIV) and
the inhibitory FcγRIIB. Thus, mixed IC may trigger all or specific subsets of activating/inhibitory FcRs,
resulting in a further complexity. Despite the ability of multiple activating FcRs on myeloid effector
cells our previous studies have demonstrated that individual IgG subclasses, such as mIgG2a/2c for
example, may mediate their activity through select activating FcγRs despite their capacity to bind to
other activating FcRs2.

This work will only become more critical with recent advancements in our ability to experimentally
characterize polyclonal IgG mixtures in ever finer resolution by making sense of this veritable data
deluge9,10. Mapping interactions in effector response between pairs of antibodies will provide an es-
sential first step toward more complex mixtures of Fc domains, and then integrating this information
with variation in antigen binding. Thus, there is great potential to integrate this undertaking with other
IgG engineering and antibody/effector cell characterization efforts.

Innovation
This research is a convergence of immunology, data analysis, biophysics, simulation, and experiment
to develop a more predictive, mechanism-based, and quantitative picture of IgG-mediated cell killing.
Each of these areas is absolutely critical in combination to ensure the success of this proposal. In
response to an antigen, our body creates a cocktail of antibodies of diverse class, glycosylation, and



antigen binding9,10. The biophysical properties of these molecules have been extensively characterized
but almost always on a component-by-component basis11. The subsequent combinatorial complexity
that arises ensures that the whole is more than the sum of its parts.
Modeling innovation to calculate and visualize mixed IgG-FcγR binding Innovative modeling and
analytical methods herein address key challenges in computationally predicting and visualizing IgG-
FcγR binding. Branching processes provide an elegant analytical approach for overcoming high de-
grees of combinatorial complexity to calculate overall binding state. These have been applied suc-
cessfully to study aggregation phenomena such as antibody-antigen binding and polymer networks
where there are analogous calculation challenges12,13. A second key challenge will be interpreting the
high-dimensional space of possible IgG treatment combinations and response across cell populations.
Tensor factorization provides an efficient and parsimonious representation of high-dimensional space
and indeed has accepted use within the machine learning community for other problems of capturing
high-dimensional relationships such as topic modeling14,15.
Builds upon earlier theory on Fc receptor activation Theoretical models have helped to under-
stand Fc receptor activation, but critical gaps still exist in their application, especially when designing
IgG therapies. Multivalent ligand/monovalent receptor binding models successfully represent activa-
tion of receptors such as FcεRI with similar binding configurations16–21. However, most cells express
members of the FcγR family simultaneously in combination, meaning any manipulation of IC composi-
tion will necessarily have multivariate effects. Thus, while the underlying multivalent binding theory is
long-standing, FcγR-IgG interactions are especially suited for developments in inference approaches
to rigorously link these models to experimental observations and to visualize high-dimensional data22.
Multivalent binding theory will be a critical companion to experiments mapping effector function; the
baffling number of potential combinations preclude purely experimental searches or intuition from re-
vealing precise answers9. For example, even considering 30 glycosylation variants, 4 IgG isotypes,
pairs of two IgGs at 4 concentrations, and 5 antigen targets of varying valency, one is left with 9,600
design possibilities9,10.

The model used here is in essence a minimal pharmacologic model of IgG effector cell-elicited
responses. By leaving out all but the most essential components, elegant pharmacologic models (e.g.,
competitive inhibition, additive interaction, etc) form the basis of analyzing compound effects from
the most initial development stages through clinical evaluation23,24. Foundational models of effector-
elicited responses will similarly allow for IgG therapies to be more rigorously engineered and evaluated.
IgG-mediated logic Identifying antibody constant regions with synergistic or antagonistic cell killing
holds promise for more than just enhanced overall effector response. For example, a highly synergistic
combination essentially provides AND logic between target antigens. Two constant regions that only
lead to effector function in combination could help target cells for which a reliably specific antigen
does not exist. In other words, if tumor cells are only unique in their expression of protein A and
B, an anti-A/anti-B antibody combination would only signal for effector cell-elicited killing when both
antigens are found in combination. This capability is similarly being pursued with chimeric antigen
receptor cellular therapies in cancer, due to lack of completely specific tumor antigens, particularly in
solid tumors25,26. By comparison, IgG-mediated logic would have significant benefits in cost, reliability,
and likely toxicity as compared to cellular therapies. Other forms of logic may also be helpful and
revealed by the approach here, such as A but not B to protect bystander antigen-expressing cells
from an existing treatment. Therefore, synergistic constant region combinations hold promise both for
enhancing the potency and avoiding side effects of therapeutic antibodies.
Methods development relevant to other receptor-ligand families Finally, the innovative methods
here have immediate application in other areas of therapeutic engineering. Other immunotherapy and
targeted therapy targets, such as the common γ-chain cytokines, FGF receptor tyrosine kinases, VEGF
receptor tyrosine kinases, and bone morphogenic proteins, involve many ligands, large receptor fam-
ilies, and are expressed across many cell types27–31. The approach developed here—an activation
model, parameterized through inference, and then mapped through tensor factorization—has imme-
diate application in understanding the function of these other receptor families, learning how they re-
spond to combinations of cues in the extracellular environment, and targeting their dysregulation.
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Figure 1: Overview (also see Gantt chart at end of proposal). Experimental IgG-FcγR binding measurements
will be fit to a multivalent binding model extended to incorporate immune complexes with IgGs of mixed
isotype and glycosylation. Binding and effector response predictions for these mixed isotype immune

complexes will be tested in vitro. Using the computational model, we will then identify IgG combinations
predicted to have synergistic effector-mediated killing and test on cell populations in vitro and in two in vivo

models of platelet and B cell depletion. Using the model, we will also build a map of murine-human homology
according to effector response.

Aim 1: Validate a multivalent binding model’s ability to predict FcγR binding to mixed IgG com-
position immune complexes
Rationale FcγR activation and effector response occurs through multivalent immune complex (IC)
binding and consequent receptor clustering. This aim will ensure that we are able to accurately model
the binding and in vitro FcγR-dependent effector response of a cell population with defined FcγR ex-
pression, given we know the composition of an IC. At the same time, it will provide a helpful data
compendium for examining the different factors that influence IC binding.
1.1. Measure mixed composition synthetic IC binding to cells of defined FcγR expression To
start, we will utilize a panel of previously-generated CHO cell lines that express each human FcγRIA,
FcγRIIA-131H, FcγRIIA-131R, FcγRIIIA-158V, FcγRIIIA-158F, or FcγRIIB individually (fig. 2)1,32. To en-
sure quantitative binding measurements, we will quantify receptor abundance in each cell line. These
measurements are performed using by staining with FITC-coupled Abs directed against FcγRIA (CD64;
clone 10.1; BD Pharmingen), FcgRIIA/IIB (CD32; clone 3D3; BD Pharmingen), and FcγRIIIA (CD16;
clone 3G8; BD Pharmingen). Absolute quantitation is obtained by comparison to a panel of beads with
defined numbers of antibody binding sites in each experiment. Cell lines with multi-modal distribu-
tions of receptor expression or variance greater than 50% of the expression level will be sorted again
for more precise expression.

We will assemble ICs using TNP(2,4,6-trinitrophenyl)-conjugated BSA at valencies of 4 and 26. Anti-
TNP antibodies of each IgG isotype will be bound to the TNP-BSA. Instead of creating IgG-TNP-BSA
complexes of one isotype as we performed previously1,32, we will use all pairs of 5:1 and 1:1 hIgG
isotype mixtures, in duplicate. Binding will be quantified on cells using a PE-conjugated goat anti-
human IgG F(ab’)2. With four IgGs, six hFcγRs, and replicates, this corresponds to 528 independent
binding measurements with which to ensure our model captures multi-IgG binding.

We anticipate that this data will show striking variation in the amount of cell binding, depending
upon the valency of IC, affinity of each IgG used, ratio of IgGs present, and receptor expressed by the
cell. In contrast to our earlier work, in this case there are two interaction affinities present, of an IgG
present at higher and lower abundance. We expect this data will reveal that both affinities influence
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Figure 2: A two-step model captures IgG immune complex binding. A) Measurements of IC binding to cells
expressing a single FcγR. Error bars indicate standard error of triplicate measurements. B) Diagram of binding
model. An initial monovalent interaction then leads to multivalent interaction with partition coefficient Kx. C) Fit

versus actual binding measurement across all IgG/FcγR pairs. Note that the most divergent
pair—hFcγRIIIA-158F/hIgG4—was determined to be based on an unreliable affinity measurement (the

equilibrium and kinetic binding assays in the source reference do not match for this case)33.

binding, which we can inspect by plotting matched cases wherein one IgG identity is held constant
and the other varies. Additionally, we expect that the relative abundance of each IgG will matter, which
we can inspect by plotting matched pairs where the only difference is the ratio between each IgG.

In addition to the isotype itself, the sugar moiety attached to the N297 residue in each individual
IgG heavy chain can alter FcγR binding. Although several hundred IgG glycovariants may exist, the
most striking effect in altered binding of an IgG glycovariant to FcγRs has been observed for fucosy-
lated/afucosylated IgG variants, which bind with altered affinity to hFcγRIIIA2,32,34. These IgG glycovari-
ants can be generated via antibody production in cell lines deficient in the fucosyltransferase gene (LEC
13 CHO cells). To study how the abundance of certain IgG glycoforms affects FcγR binding, we will use
pairs of 10:1, 3:1, and 1:1 hIgG1 glycovariant mixtures and study binding to hFcγRIIIA-expressing cell
lines like above in triplicate. Depending on the outcome of these experiments we plan to extend these
studies to other human IgG isotypes. Of special interest are hIgG2 and hIgG4, which are considered
low FcγR binders, yet it is unclear how the presence of different amounts of afucosylated glycovariants
affects their functional activity. This set of data will be instrumental in assessing how the abundance
of individual glycoforms in a mixture affects FcγR binding and effector functions (e.g., how much this
can be allowed to change during manufacturing).
1.2. Generalize a multivalent binding model to account for ICs of mixed composition To model
these binding data, we will extend our publishedmodel of IgG-FcγR engagement to account for IgG iso-
type and glycovariant mixtures1. Briefly, we model FcγR engagement as a two-step process, wherein
an immune complex first binds to a single receptor with kinetics equal to those of monovalent binding
(fig. 2B)16–21. Subsequent binding events are governed by a partitioning parameter (Kx). This model
of multivalent engagement successfully represents other receptors with a similar binding configuration
such as FcεR and TCR18,21. A critical extension of this model that we made when applying it to the
FcγR family is extending it for multiple receptors present. In doing so, Kx is proportional to the affinity
of the receptor, which is necessary for the model to follow thermodynamic laws (detailed balance)1.

The largest hurdle to applying this model for IgG mixtures is performing the binding configuration
calculation. Though the number of microstates explodes in a combinatorial manner (we have to inte-
grate over all possible mixtures of IC binding states—e.g., an IC bound at site 1, bound at site 1 and 2,
etc—weighted by their individual likelihood), modeling the probabilities of these states as a branching
process ensures we can efficiently calculate the macroscopic binding we expect to observe12. Impor-
tantly, despite many more possible binding configurations, there is no additional parametric uncertainty
relative to our published model1. Indeed, because of this, we do not necessarily need to fit any new
parameters and can directly make predictions based on our published parameterization (fig. 2). As
previously, Kx must be proportional to the affinity of an interaction to satisfy detailed balance, and so
there is only one K∗

x value we need to fit (Kx = K∗
xKa)1. We will nevertheless perform fitting to this new



data, however, in case it can provide more exact parameterization for K∗
x.
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Figure 3: Strategy for evaluating synergy, and preliminary evidence a
multivalent binding model predicts non-additive interactions. A) We
expect that, when plotting a quantity from the binding model and

varying the relative abundance of two IgG Fc compositions, the output
quantity would have a linear relationship with mixture composition. We

take deviations from this relationship to be either synergy or
antagonism depending on whether they are above or below the line,
respectively. This outcome will be summarized by quantifying the area

under the curve for both the additive and actual case
(S = (Aactual − Aadditive)/Aadditive). B) Example of predicted synergy in IC
binding. C) Example of predicted synergy in murine classical monocyte

activity (receptor expression previously measured1).

1.3. Fit and verify that the
model can predict effector re-
sponse in vitro As validation of
our model, predictions of binding
and effector response will be eval-
uated in peripheral blood mononu-
clear cells (PBMC). PBMCs will be
separated and differentiated into
individual effector cell populations
and stimulated with the same IC
complexes1,32,35–37. As before, we
will assume effector response is
proportional to the amount of acti-
vating receptorminus the amount of
inhibitory receptor found in bound
complexes of multiple receptors1.
This construction satisfies the cri-
teria that increases in activating or
inhibitory receptor multimerization
have their expected effect, and that
multimerization is essential for FcγR
activation1. Though this is the most
parsimonious construction that sat-
isfies these rules, we will keep in mind this assumption and can easily explore alternative constructions.

Effector cell response will be quantified through induced cell type-specific cytokine secretion since
we are stimulating with synthetic ICs (e.g., we cannot measure ADCC)32. Ten IC complex mixtures
with large predicted variation in response, comprised of the isotypes and glycosylation forms from
Aim 1.1, will be selected to test with each cell type. We will focus on monocytes, macrophages, and
NK cells due to their ease of isolation and role of cytokine secretion during effector response35. The
FcγR expression of these populations is well-characterized, but we can re-quantify this if needed using
our well-established protocols1,3,38. We will measure a panel of >5 cytokines (including IL-6 and IFNγ)
in parallel by bead-based ELISA to ensure our results are not cytokine specific and our ranking is
similar across all IC-responsive cytokines within a cell type32,35. As different cell types might have very
different sensitivities to activated FcγRs, we will test our model’s predictive capacity by comparing
predicted and actual ranking (Spearman correlation) of response strength to these 10 mixed ICs within
a cell population. We expect close agreement between the IC compositions predicted to maximally
induce a response in each cell population, and the responses measured. In addition to measuring
cytokine secretion we will also study the phagocytosis of fluorescently labeled (FITC coupled TNP-
BSA) IC. By using a combination of intracellular and extracellular FACS staining for FITC we will be
able to distinguish between cell surface bound and intracellular antigen. As a second independent
verification of IC phagocytosis of fluorescently labeled IC we will use cyto-spins of IC fed monocytes
and macrophages and analyse intracellular IC via immunofluorescence microscopy. This work will
demonstrate that a binding model can predict which effector cell populations will respond to ICs of
mixed composition, helping to make sense of the vast number of possible IC compositions.

Finally, to validate use of this model for mIgG interventions in Aim 3, we will test a small subset of
mixed ICs for our ability to predict relative effector response. From previous work we have both affinities
and receptor abundance measurements with which to make model predictions1. We will select five
mixtures of mIgG1/2c, with large variation in their predicted response, to test (see Aim 3.1). The same
effector populations as above will be isolated from mouse spleens, and cytokine response measured
by bead-based ELISA. We will test agreement of our measurements and model predictions with the
same strategy as above.



Preliminary Data All of the methods used in Aim 1 are demonstrated in previous studies from our
labs1,32. As exemplified in fig. 2, we have successfully measured binding in the panel of CHO cell lines
used here and demonstrated that a multivalent bindingmodel can account for binding of ICs comprised
of single IgGs. This work successfully predicted in vitro and in vivo effector response both for human
and murine ICs.

In preliminary work we have implemented the most basic components of the multi-IgG binding
model to demonstrate that calculating binding with this approach is indeed feasible (fig. 3). To verify
correctness we have compared this new implementation to our published model for cases of a single
IgG present and see agreement. The examples of non-additive interaction also fit intuitively with cases
of synergy and antagonism we expected to observe. In fig. 3B, hIgG2 has almost no binding, while
hIgG3 is a high affinity interaction. Sweeping between each IgG therefore is, in effect, changing the
valency of the IC, and the first few hIgG3 added to the left of the plot have the greatest effect on the
avidity of the interaction. One would expect adding a second binding site to have a larger relative
avidity effect than adding a sixth site, like this suggests. In total, while additional work is necessary to
make this binding model implementation usable for these studies, we do not expect challenges.
Challenges & Alternative Approaches We have previously used all of the methods in Aim 1 and
so do not anticipate significant challenges in these experiments. If our binding measurements do not
match our modeling predictions, we will first investigate whether the discrepancy is in a subset of the
measurements (e.g., those with a certain IgG), specific outliers, or across all the data. The hFcγRIIIA-
158F/hIgG4 case in fig. 2 provides an example, where we identified an outlier and traced it to the
underlying affinity measurements1. If there are discrepancies across a subset of the data, we will
investigate the underlying molecular mechanism. We can also use the single IgG measurements from
our published work as a guide for whether discrepancies are modeling or experimental problems.

If our measured and predicted binding is consistent but our cell response measurements do not
match our predictions, this will provide an opportunity to investigate additional mechanisms of effector
regulation beyond binding. For example, recent reports have implicated clustering of hFcγRI as a
mechanism of inside-out signaling39. If we observe divergent results from what we predict, we can
investigate whethermechanisms such as inside-out signaling influence the relative response to different
ICs. We can use a panel of blocking antibodies targeting each FcγR to isolate the influence of each
FcγR expressed within a cell population2,38. Importantly, these other regulatory factors can contribute
to effector cell response only after a cell has interacted with an IC, and so IC binding should still be a
dominant factor in effector cell response, and certainly one for which we must first account.
Aim 2: Map human and murine IgG isotypes to one another according to conserved effector
response
Rationale Unclear homology between the human and murine FcγR families stymies our ability to
translate findings from murine models of disease11. Using the overarching hypothesis that there is
conserved regulation at the level of cell type-specific effector response, we will use our interaction
model to build a homology map between species.
2.1. Map IC composition to effector responses by tensor decomposition An inter-species map
would greatly aid translation of findings in murine models of IgG-related diseases and IgG-elicited cell
killing. Assembling such a map first requires a global view of how the family is regulated. Our model
of FcγR engagement, besides fit parameters common to all FcγR-IgG pairs, requires affinities for each
FcγR-IgG pair and the profile of FcγR expressionwithin a cell. As these exist for effector cell populations
within both murine and human cells1,38,40, we will use these to assemble a data compendium of the
predicted effector responses across IgG combinations in each species.

All combinations of IC concentration and composition will be varied to create a data tensor of
model-predicted FcγR activity within each effector cell population. We will use the same constructed
activity calculation as in Aim 1, as it successfully predicts effector response in our previously published
work and will be further validated in Aim 1.3. We will simulate every possible combination of cell
population (eosinophils, NK cells, dendritic cells, neutrophils, classical monocytes, and non-classical
monocytes based on their FcγR expression), valency (1–26), concentration (log-scaled, 1 fM–1 µM), and
IgG composition (combinations of 1:1, 1:2, 1:5, and 1:10 mixtures). We will start with the FcγRIIIA-158F
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Figure 4: Overview of tensor factorization to map effector response. A central challenge in engineering
IgG-elicited cell killing is that any intervention is pleiotropic on multiple levels. That is, an IC can have differing
effects based on its IgG composition, concentration, and valency, with responses from distinct cell populations.
With a binding model we can predict the outcome of any individual combination of factors but still have trouble
mapping and visualizing the predominant axes of variation in these data. Through tensor factorization, this
four-dimensional space can be decomposed into component factors that capture predominant axes of

variation. For example, in the hypothetical factorization results shown, components three and four increase
with concentration, and valency increases along component four. Component three, however, shows a bimodal
valency relationship. Eosinophils and classical monocytes are activated along component four, while only the
latter are activated along component three. Through the last components plot, we can see which mixtures
drive movement along each component; IgG1-containing mixtures are positively associated with component
four, while component three is exclusive to IgG1/IgG2a combinations. So, if we want to maximally activate

eosinophils, these plots indicate we want a combination with IgG1 and higher valency. In this way, factorization
provides a design schematic for variation in effector response.

and FcγRIIA-131R genotype; however, this method also provides an opportunity to look at predicted
differences in regulation based on genotype in future studies. While we are starting with a selected set
of effector cell populations for which we have existing FcγR abundance measurements, these results
can quickly and easily be updated with new measurements (e.g., macrophages, dendritic cell subsets).
These ~100,000 values for each species capture the variation in predicted effector function due to
differences in binding propensity to each cell population but remain challenging to interpret due to the
high-dimensional nature of the data.

We will then utilize canonical polyadic (CP) decomposition to visualize these data, a data reduction
technique similar to principal component analysis in some aspects, representing the variation in effec-
tor response in a reduced dimensionality space14. Briefly, this method finds factors, or directions of
variation in the data, and the relative contribution of each variable to that factor. The parallel plots of
each factor and the variables involved are essentially a map of the variation present within the data.
Importantly, with a sufficient number of factors, the data tensor can be perfectly reconstructed from
the factors, and so information is preserved in the factorization process. We will determine the number
of factors necessary to capture >95% of the variance in predicted response for each cell population
upon reconstruction. This factorization will then be used as a “map” for regulation of the FcγR family.
2.2. Correlate murine and human effector responses according to similar cell population re-
sponse We hypothesize that, while the individual FcγRs/IgGs are not directly conserved, there exists
conserved regulation in the form of which cell populations are activated coordinately. That is, we can
identify cross-species IC pairs targeted to have the same cell population responses. To do so, we will
correlate each component of the cell population factorization between species. Identifying significant
correlations here (Pearson correlation, with family-wise error rate correction through cell population
randomization) will test our hypothesis that conserved regulation exists targeting the same cell popu-
lations.



As each resultant component of the factorization represents a separable subset of variation in
FcγR/IgG regulation, we expect to observe one-to-one correspondence between components of the
human and murine factorization. Therefore, we expect to see that each component of the cell popula-
tion factorization has a single significant correlation pair (fig. 5).
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Figure 5: Schematic for
expected results of

human–murine cell population
correlations. We expect to
observe one-to-one links

between each component of the
factorization across species.
However, this need not be the
same component number in
each species. For example,

here, murine component three
and human component two
might be correlated due to
shared weighting of classical
monocytes and NK cells.

2.3. Verify this mapping predicts known, similar cross-species ef-
fector cell responses Experimentally testing our mapping from Aim
2.2 would require isolation of many immune populations from both
murine and human sources, along with cytokine measurements and
functional characterization in both species. This scale of validation is
outside the scope of this proposal but will be enabled in future studies
by the present analysis. However, we will check for a few features we
expect to observe: (1) hIgG1/hIgG3 and mIgG2a generally have greater
effector responses and are more pro-inflammatory. We expect to iden-
tify linked components that involve mixtures of both these IgG11. (2)
Both human and murine families have a single inhibitory receptor with
similar expression patterns, hFcγRIIB/mFcγR2B, and so we expect that
these will be aligned in the factorization (weighted similarly in linked
components)11. (3) hFcγRIIIA/mFcγRIII are the sole Fc receptor on NK
cells. Therefore, we expect to find linked components that represent
activation of these receptors and includes NK cell response11.

In addition to the individual component-specific relationships we ex-
pect to find above, we will test our ability to apply our homology model
for “translating” between murine and human IgG compositions in Aim
3.3. This will evaluate the most translationally-valuable aspect of our
results here.
Challenges & Alternative Approaches Importantly, while Aim 2 aids
translation of Aim 3 and addresses a fundamental question about con-
servation of this receptor-ligand family, execution of both can proceed
independently. As CP decomposition efficiently and parsimoniously
captures variation in the original data tensor, we expect the factors identified to clearly display any
correspondence between species. However, if we do not identify components with corresponding
variation between species, we can take a more targeted approach. With an IC composition that leads
to a certain set of predicted effector cell response in humans (e.g., NK cells, but not other cell types),
we can then vary murine IC composition to look for compositions that have a matching profile in mice
(or vice versa). This will still identify homology across species.

We expect CP decomposition to be the most useful and easily interpretable method for tensor fac-
torization, given that it provides parallel components along each dimension. However, many other
factorization methods exist which may have benefits depending upon the variation found in the data.
For example, Tucker decomposition is a more flexible generalization of CP decomposition that allows
for linking between components through a core tensor41. This creates a tradeoff of fewer components
being necessary to explain the data, but additional challenge in visualizing the core tensor. Addition-
ally, both CP and Tucker decomposition can be forced to have only non-negative components. By
constraining the factorization in this way, this often makes the resulting components much easier to
interpret (since it separates out balanced negative and positive effects)42. In total, there is a rich toolbox
we can apply to further explore the data here to create an effective map of IgG-FcγR regulation.
Aim 3: Link IgG effects and in vivo efficacy to identify & verify synergistic IgG-elicited cell killing
Rationale Successfully identifying examples of synergistic effector-elicited killing will demonstrate
that IgG isotypes have unique properties in combination. Moreover, it will show that a binding model
can successfully identify these cases to engineer response and that this synergy can be employed
successfully in vivo.



3.1. Regress single IgG treatments and in vivo cell clearance to identify synergistic combina-
tions We will use a passive mouse model of immunothrombocytopenia (ITP) and a model of cyto-
toxic antibody-mediated B cell depletion (CD20 specific) as model systems for IgG-elicited cell killing43.
These model systems have beneficial properties, including that effector cell-elicited killing (platelet or B
cell depletion) can be assessed and quantified rapidly, and do not involve long-term inflammation with
unknown compensatory changes. Moreover, the responsible effector cells are liver resident Kupffer
cells and/or resident monocytes, which have a well-defined FcγR expression pattern3,4.
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Figure 6: Both platelet and B cell IgG-mediated depletion are FcγR-,
Fc isotype-, and Fc glycosylation-dependent43. Quantification of
platelet and B cell depletion using either 6A6 or anti-CD20 IgG,

respectively.

To predict cell killing, we will use
a similar regression approach to the
one we recently performed for anti-
tumor IgGs in a B16F10 melanoma
model1,2. Briefly, for each interven-
tion, the binding model predicts a
level of FcγR activity for each cell
population, and then those “activi-
ties” are regressed against fractional
reduction in cell number (fig. 8)1. This
regression will be performed using a
y = 1−exp(−X·p) relationship, where
X is the matrix of activities and y is
the fractional reduction in cell num-
ber. This construction corresponds
to an exponential survival distribution
and thus an underlying random pro-
cess wherein every cell is at uniform
risk of clearance. The structure of
the regression portion of the model
is unchanged by considering mixed
composition ICs; therefore, with our
updated binding model we will be
able to immediately make predictions
about in vivo response after fitting.
Like with the B16F10 model, we will
use a panel of pre-existing experimental results in which different IgG isotypes, glycosylation variants,
and FcγR knockouts have been evaluated. A wider panel of these experiments exists for both the ITP
and CD20-depletion models than the B16F10 case, in fact, which will aid exact parameterization of the
model and therefore accurate predictions (e.g., fig. 6)2,43,44. Model prediction will be quantified through
leave-one-out (LOO) and leave-one-isotype-out crossvalidation. The significance and distribution of
derived quantities will be estimated by bootstrap45.

We will identify a predicted case of synergistic interaction between mIgG isotypes and/or glycosyla-
tion variants (fig. 7) for each target cell. Synergy will be calculated according to the Bliss independence
rule23. That is, in the absence of synergy, we will assume each antibody has an independent, propor-
tional decrease in the number of platelets or CD20-positive cells observed. IgG combinations with
the greatest predicted reduction over that from an additive effect will be selected. If these cases are
widespread we will also consider the disease relevance of the glycosylation and/or isotype combination
(e.g., prioritize fucose/non-fucose combinations due to their therapeutic manufacturing relevance). We
also expect the combinations identified will be comprised of mIgG1 and/or mIgG2c, given the efficacy
of these as single agents2,43,44.

Note that this approach is not limited to synergy in cell killing arising through synergy in FcγR bind-
ing (e.g., fig. 3C). For example, high affinity IgGs tend to also have a higher affinity for the inhibitory
hFcγRIIB/mFcγR2B. However, these higher affinity IgGs could play an outsized role on initial monova-
lent binding of ICs. ICs with a small number of high-affinity IgGs along with many lower affinity (but
mFcγR2B non-binding) IgGs therefore might lead to greater activation than ICs with either IgG alone.



3.2. Verify predicted cases of synergistic effector response in vivowithin models of antibody-de-
pendent, effector-mediated platelet and B cell depletion All four human and mouse IgG isotype
variants are available for both in vivo model systems2,43,44,46,47. Afucosylated IgG isotype glycovariants
can be generated by recombinant antibody production in LEC13 cells as we have done before48. The
selected combinations will be evaluated in C57BL/6 mice in parallel to matched treatments with either
IgG alone. Platelet and B cell depletion in the blood will be assessed before, 4 hours after, and 24
hours after the corresponding IgG isotype mixture injection by FACS analysis. We will use 8 mice per
treatment, or 32 total (control, each IgG alone, and the combination), to provide sufficient power (0.8)
for each test below.
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Figure 7: Synergy strategy. We will verify our cases of
predicted synergy through: (1) correlation between prediction
& response, (2) significant synergy in the direction predicted,

and (3) mechanism of synergy (Aim 3.3).

In both target cell models we will evalu-
ate the outcomes of the experiment in a few
different ways. First, to evaluate the predic-
tive capacity of our model in this indepen-
dent cohort, we will test that there is signif-
icant correlation between the predicted and
actual target cell depletions (Pearson correla-
tion). Second, we will test that (1) the devia-
tion observed with the combination is toward
synergy as predicted, and (2) the synergy is
statistically significant (mixed effects model,
significance tested by bootstrap). Within
Aim 3.3 we will additionally test the mecha-
nism by which synergy arises. In total, this
work will demonstrate that mixtures of IgG
have unique properties of effector-elicited
cell clearance in combination.

Lastly, to test our predictions of homol-
ogy between the human and murine FcγR
families, we will test these combinations in
humanized mouse models as we have done
before46,47. All single and mixture conditions used above will be “translated” from murine to human
IgG compositions using the results of Aim 2. These 6 conditions (3 interventions for either B cell or
platelet targeting) will be quantified for target cell depletion at the same times as above. We will test
for significant correlation between the results from the C57BL/6 and humanized models (Pearson cor-
relation). This will serve as partial validation of the modeling in Aim 2 and demonstrate the value of the
human-mouse homology model.
3.3. Identify the relevant cell populations and mechanisms of synergistic effector response
Broadly, there are four possible underlying mechanistic sources of synergy/antagonism between IgGs:
(1) at the level of binding to an individual effector cell population, (2) not in binding, but in the resultant
response of an individual cell population, (3) additivity on previous levels, but with two IgGs targeting
a differing complement of cell populations, or (4) additivity across cell populations, but some other
emergent interaction through cell communication.

To resolve the underlying mechanisms of interaction, we will use two initial experiments. First, we
will use TNP-BSA binding studies as outlined in Aim 1, with primary effector cell populations, to identify
whethermechanism (1) might explain the interactionwe observe. Individual effector cell populationswill
be separated and then incubated with each IgG separately, or with the indicated mixture of both IgGs.
Significant interactions between the IgGs in binding will be quantified through deviation from additivity.
Second, we will quantify the isobologram of ADCC/ADCP effector response in each cell population
to address mechanism (2). For B cells, we will incubate each population with B cells and anti-CD20
IgGs of the same mixtures as those tested in vivo. The number of remaining B cells will be quantified
through B220 staining after 72 hours incubation44. For platelets, we will incubate them with each cell
population and 6A6 antibodies of the same Fc compositions. The number of remaining platelets will
be quantified at 24, 36, and 72 hours of incubation using calcein staining then flow cytometry. Finally,
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Figure 8: An FcγR-IgG binding model accurately predicts in vivo IgG-mediated tumor cell killing1. A) Schematic
of earlier IgG isotype experiments (top) and our approach (bottom). In earlier work, the ratio of the highest
affinity activating receptor to that of the inhibitory receptor (A/I ratio) was proposed to predict response2. B)
Effectiveness (proportional reduction in lung metastases, i.e. no reduction is 0.0, complete is 1.0) of individual
mIgG interventions versus the A/I ratio for each mIgG constant region. C) Individual cell activities calculated for

each intervention using receptor multimerization predicted by multivalent binding model. Each quantity is
scaled according to the weighting applied by the fitted regression model (left) or by maximum cell type

response observed (right). D) Predicted versus observed effectiveness. E) R2
c with individual input components

removed. F) Calculated activity index for cMO versus overall effectiveness of each intervention. G) Predicted
effect of modulating each individual mFcγR affinity of mIgG2b. Regression performed with exponential survival
relationship in contrast to published work, due to benefits explained in Aim 3.11. EO: eosinophil, cMO: classical

monocyte, ncMO: non-classical monocyte, NK: natural killer, NE: neutrophil.

we will investigate mechanism (3) by determining whether additive combinations of the individual cell
population effector response measurements can explain the overall responses we observe in vivo.

We strongly expect these first three mechanisms will explain the synergy we observe, as these are
the three mechanisms captured by our modeling prediction. Verifying the relevant cell populations in-
volved will further validate the accuracy of our model. Based on our previous in vivo studies in both
the ITP and B cell depletion model, we would expect that liver resident Kupffer cells and/or resident
monocytes are the relevant effector cell populations. Both cell subsets express all activating and the
inhibitory FcγRIIB, making it difficult to distinguish the contribution of both cell subsets purely based on
using individual FcγR knockout mice. However, by selectively depleting bone marrow derived resident
monocytes through small doses of clodronate liposomes3 or by using a titrated irradiation approach
to generate mice with a selective lack of FcγRs on bone marrow derived monocytes or liver resident
Kupffer cells40 we will be able to delineate if B cell or platelet depletion through mixed IgG subclass
antibodies behaves differently compared to the use of one IgG subclass in vivo. Briefly, animals will
be injected with select ratios of IgG subclass mixtures of platelet (6A6) and B cell (CD20) specific anti-
bodies. B cell and platelet counts will be assessed in the blood 4 and 16 hours after antibody injection.
To assess if tissue resident Kupffer cells are involved in B cell and platelet depletion, we will inject
mice with 10 µL of clodronate liposomes, which shows a rather selective depletion of bone marrow
derived resident monocytes3. Moreover, we will generate bone marrow chimeric animals selectively
expressing activating FcγRs either on tissue resident Kupffer cells or bone marrow derived monocytes
by irradiating FcγR deficient or sufficient animals with 6Gy followed by a reconstitution with bone mar-
row of FcγR sufficient or deficient mice40. Should mixed IgG subclass dependent target cell depletion
involve other cell populations, we can also study the involvement of NK cells or neutrophils by using
either NK- or neutrophil-depleting antibodies or NK cell- or neutrophil-deficient mouse strains. We
expect to observe a reduction in the degree to which either platelets or B cells are depleted that is
consistent with our model’s weighting for that population with the given mixture. Our model treats cell
populations as having separable contributions to platelet or B cell depletion. Therefore, if the effects



of depleting effector cell populations is other than we expect, and depleting either effector population
individually has a greater effect than expected, we will take this as evidence of cell communication or
other emergent behavior. In total, from these studies we will have a mechanistic view of how synergy
between IgGs arises.
Preliminary Data In a recently published study, we employed a model of multivalent IC binding to
FcγRs and showed that it can capture and predict experimentally measured binding and effector re-
sponse with differing antigen valency, isotypes, and glycosylation variants1. With this model, we could
quantitatively predict anti-tumor cell killing in response to a single TA99 antibody of defined Fc region
in vivo. While predicting outcome, our approach also accurately identified the cell population driving
response in this model1,49. We have verified an identically-constructed model can similarly predict
platelet depletion (crossvalidation R2 > 0.8).
Challenges &Alternative Approaches If IgG combinations selected in Aim 3 do not show synergistic
responses, the mechanism-focused measurements in Aim 3.3 will be extremely valuable to diagnose
any inconsistencies from the model predictions.

Many alternative constructions exist for defining synergy, each based on underlying definitions for
how two agents additively interact23. Bliss synergy is a useful definition of synergy for our purposes
due to its simplicity and derivation from a statistical definition of additivity that fits well with our model
of predicting in vivo effect. Further, because it is defined based on a probabilistic interaction of individ-
ual agent’s effects, Bliss synergy is likely to be interpretable alongside the factorization results of Aim
2. However, we can explore other definitions of synergy to identify which are most informative of ther-
apeutically meaningful interactions. In particular, Lowe synergy defines additive interactions through
the expectation that no drug should be synergistic with itself. To test whether this definition would be
more helpful, we can test how frequently Bliss synergy arises with IgGs mixed with themselves. Bliss
synergy most often indicates that an agent has synergy with itself when a dose response curve is espe-
cially sensitive with respect to concentration50, which we have not seen in our binding measurements.
Finally, Lowe synergy yields no close formed solution, and so has some added difficulty when calcu-
lating. Thus, in total, Bliss synergy is a well-justified starting definition, but alternative definitions such
as Lowe synergy may be informative and provide an alternative strategy.

To relate the activities of each effector cell population to depletion of B cells and platelets, we have
to define a survival function, or a function for the relative risk of each additional target cell to be cleared.
We propose using an exponential distribution, because this corresponds to the outcome observed
when each target cell is at identical “risk” of being cleared. However, alternative survival distributions
exist, corresponding to underlying definitions of relative risk. In particular, the Gompertz and Weibull
functions correspond to multiplicative and additive differences in “risk” among target cells. Therefore,
using these distributions could capture, for example, if platelets and B cells lie on a continuum from
easy to hard to clear for reasons unrelated to their antigen availability.
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