Engineering more precise and potent TAM-targeted therapies

Aaron Meyer March 20, 2017

Cell signaling is complex, and challenging to apply toward a desired goal

Cell signaling is complex, and challenging to apply toward a desired goal

Receptors enable information transmission across the plasma membrane

Figure 16-30 Essential Cell Biology 3/e (© Garland Science 2010)

Important effects on:

- Metastasis
- Resistance
- Immunosuppression

Targeting AXL potently blocks metastasis

7 mice/group, MDA-MB-231

Gjerdrum et al, PNAS, 2010

Targeting AXL potently blocks metastasis

7 mice/group, MDA-MB-231

Gjerdrum et al, PNAS, 2010

Targeting AXL potently blocks metastasis

7 mice/group, MDA-MB-231

Gjerdrum et al, PNAS, 2010

TAM receptors have widespread roles in immune regulation

TAM receptors have widespread roles in immune regulation

TAM receptors have widespread roles in immune regulation

TAM receptors inhibit NK cell clearance

Subcutaneous B16F10 shown. TC-1, 4T1, NeuT+ also tested.

Paolino et al, Nature, 2014

Many viruses "play dead" for cell entry and immune suppression

How do TAMs function?

Conundrum: AXL does not robustly respond to ligand stimulation

MDA-MB-231

Meyer et al, Cell Sys, 2015

Input

Output

Output

Large dynamic range

Large dynamic range Rapid response

Many RTKs can be considered as "ligand concentration sensors"

100 ng/mL EGF/IGF1, 50 ng/mL HGF, hMLE-Twist1

Kim, Meyer, et al, Mol Cell Proteomics, 2011

AXL responses to Gas6 stimulation are complex and dynamic

PtdSer interaction is required for sustained AXL activation

TAM ligands act as a receptor-PtdSer bridge

TAM ligands act as a receptor-PtdSer bridge

TAM ligands act as a receptor-PtdSer bridge

Differential equations allow us to map our knowledge to kinetics

Differential equations allow us to map our knowledge to kinetics

TAM kinetic model enables mechanistic interpretation of kinetic response measurements

Ig1 Fit Gas6 Gas6 Gas6 Detailed balance

TAM kinetic model enables mechanistic interpretation of kinetic response measurements

TAM kinetic model enables mechanistic interpretation of kinetic response measurements

PtdSer exposure is a spatially localized process

5 µm

Exposed PtdSer Membrane

Ruggiero *et al*, 2012

A spatial model can test effect of ligand presentation

A spatial model can test effect of ligand presentation

Local stimulation results in greater overall AXL signaling

PS-clustered Gas6

Local stimulation results in greater overall AXL signaling

Local stimulation results in greater overall AXL signaling

Relocalization of AXL promotes autocrine activation

BT-549

a-AXL

Relocalization of AXL promotes autocrine activation

BT-549

a-AXL

Relocalization of AXL promotes autocrine activation

IP:

AXI

IB: Gas6

BT-549

a-AXL

Biphasic response to PtdSer emphasizes the importance of localization

Biphasic response to PtdSer emphasizes the importance of localization

Biphasic response to PtdSer emphasizes the importance of localization

TAM receptor spatial sensing arises from ligand binding asymmetry

Expanding to all three TAMRs: combinatorial complexity makes modeling essential

Expanding to all three TAMRs: combinatorial complexity makes modeling essential

64 responses

Assuming 4 levels of each quantity

Expanding to all three TAMRs: combinatorial complexity makes modeling essential

Assuming 4 levels of each quantity

Measuring TAM binding kinetics

TAM receptor-ligand affinities have been measured before

Demarest et al., 2013

Separating the TAM Ig affinities reveals diverse binding models

Richards & Meyer, In prep.

Individual Tyro3 affinities are consistent with overall receptor binding

Model for all three receptors and one ligand

Every pairwise heterodimerization partner included

No additional parametric uncertainty due to detailed balance

Model for receptor decoy fragments provides specific predictions for inhibition specificity

Assume ligand in solution becomes bound with receptor fragment to equilibrium

Target binding site influences the effect of competitive ligand inhibitors

1 nM Gas6, high AXL expression

TAM Ig fragments can be used as a tool for probing the *in vivo* environment

*Should also have activity against ProS

Future plan: Use combinations of targeted TAM therapies to deconvolve their *in vivo* role

Future plan: Use combinations of targeted TAM therapies to deconvolve their *in vivo* role

Ted Richards

Terri Brodeur Breast Cancer Foundation

Conclusions

- Each TAM shows striking diversity in its Ig domain affinities
- Ig-specific targeting can decouple ligand binding and activation
- Enormous complexity can underlie activation of even just a single, small receptor-ligand family

Systems approaches for rationally designing innate immune therapies

Systems approaches for rationally designing innate immune therapies

Innate immune receptors share molecular features

- Signaling effects poorly understood
- Simultaneous signaling & trafficking
- Activated through clustering rather than strictly ligand interaction

Time to link theory with data-driven analysis

Hlavacek, Posner, Perelson, Biophys J, 1999

Sets of resistance mechanisms can uncover conserved molecular regulation

Sets of resistance mechanisms can uncover conserved molecular regulation

Meyer et al, Sci Sig, 2013

Miller & Meyer et al, *PNAS*, 2013 Miller... Meyer... Lauffenburger, *Canc Discov*, 2015

Meyer et al, Sci Sig, 2013

Basal signaling

Bypass signaling

Meyer et al, Sci Sig, 2013

Meyer et al, Sci Sig, 2013

Manole, Richards, Meyer, Canc Res, 2016

Population average measurements do not capture cell-cell variation in response

A subpopulation of AXL+ cells maintain bypass Erk/JNK activation

A subpopulation of AXL+ cells maintain bypass Erk/JNK activation

A subpopulation of AXL+ cells maintain bypass Erk/JNK activation

Sets of resistance mechanisms can uncover conserved molecular regulation

- Bypass resistance involves a conserved set of molecular changes
- Recognizing this allows us to reason about cell-cell heterogeneity, response to inhibitors, and RTK transactivation

Sets of resistance mechanisms can uncover conserved molecular regulation

Eric Haura *Moffitt*

Forest White MIT

- Bypass resistance involves a conserved set of molecular changes
- Recognizing this allows us to reason about cell-cell heterogeneity, response to inhibitors, and RTK transactivation

Far-future direction: A "bypass" receptor view of cancer immune evasion

Toyama et al, Nat Comm, 2015

Far-future direction: A "bypass" receptor view of cancer immune evasion

Toyama et al, Nat Comm, 2015

Mahoney et al, Nat Rev Drug Discov, 2015

Systems level measurement, modeling, and manipulation are an essential part of bioengineering

Barney... Meyer, Peyton, Submitted

Systems level measurement, modeling, and manipulation are an essential part of bioengineering

PS-based materials development

Detecting and manipulating PS and its interactions

Amara et al, Nat Rev Microbiol, 2015

Barney... Meyer, Peyton, Submitted

Acknowledgements

Simin Manole

Annelien Zweemer

Ted Richards

Song Yi Bae

Undergraduate students

- Ryan Robinett
- Alexa Ning
- Minyi Lee
- Colton Stearns

Mentors

- Doug Lauffenburger
- Forest White
- Angela Koehler
- Frank Gertler

Collaborators

- Eric Haura (Moffitt Cancer Center)
- Shelly Peyton (UMass Amherst)
- Anja Lux (U Erlangen-Nürnberg)
- Falk Nimmerjahn (U Erlangen-Nürnberg)
- Qing Nie (UC Irvine)
- Doron Levy (UMD)
- Laura Heiser (OHSU)

http://asmlab.org

Funding

- NIH Director's Early Independence Award
- Terri Brodeur Breast Cancer Foundation
- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation
- Koch Frontier Research Program