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Nature Reviews | Cancer

Primary tumour Vascularization Detachment

Circulating
tumour cell

Adhesion to
blood vessel wall Extravasation

Growth of 
secondary tumour

Intravasation

In the series of steps that comprise the 
metastatic process, cancer cells migrate or flow 
through vastly different microenvironments, 
including the stroma, the blood vessel 
endothelium, the vascular system and the 
tissue at a secondary site1,2 (FIG. 1). The ability 
to successfully negotiate each of these steps 
and advance towards the formation and 
growth of a secondary tumour is dependent, 
in part, on the physical interactions and 
mechanical forces between cancer cells  
and the microenvironment. For example, the 
physical interactions between a cell and  
the extracellular matrix — the collagen-rich 
scaffold on which it grows — have a key role 
in allowing cells to migrate from a tumour to 
nearby blood vessels. During intravasation 
and extravasation, cells must undergo large 
elastic deformations to penetrate endothelial 
cell–cell junctions. In the vascular system, 
the interplay between cell velocity and 
adhesion influences the binding of cancer 
cells to blood vessel walls and hence the 
location of sites where a secondary tumour 
can form and grow. A clearer understanding 
of the role of physical interactions and 
mechanical forces, and their interplay with 
biochemical changes, will provide new and 
important insights into the progression of 
cancer and may provide the basis for new 
therapeutic approaches.

Physical interactions in invasion
Following the growth of a primary tumour, 
the combination of continued tumour pro-
liferation, angiogenesis, accumulated genetic 
transformations and activation of complex 
signalling pathways trigger the metastatic 

cascade (FIG. 2). In particular, the detachment 
of carcinoma cells from the epithelium and 
the subsequent invasion of the underlying 
stroma resembles, at both the cellular and 
molecular levels, the well-characterized 
epithelial-to-mesenchymal transition (EMT) in 
embryogenesis3. The role of EMT in cancer 
metastasis is being actively explored4,5. 
Critical to EMT is the loss of E-cadherin 
(an intercellular adhesion molecule) and 
cytokeratins, which leads to dramatic changes 
in the physical and mechanical properties 
of cells: specifically, reduced intercellular 
adhesion and a morphological change from 
cuboidal epithelial to mesenchymal6. One 
consequence of these changes is detachment 
from the primary tumour and the acquisition 
of a motile phenotype5. These cells also 
begin to express matrix metalloproteinases 

(MMPs) on their surface, which promote 
the digestion of the laminin- and collagen 
IV-rich basement membrane7. After leaving 
the tumour microenvironment, motile 
tumour cells encounter the architecturally 
complex extracellular matrix (ECM), which 
is rich in collagen I and fibronectin8 (BOX 1). 
In the vicinity of a mammary tumour, the 
matrix is often stiffer than in normal tissue 
owing to enhanced collagen deposition9 and  
lysyl-oxidase-mediated crosslinking of 
the collagen fibres by tumour-associated 
fibroblasts10. Collagen crosslinking enhances 
integrin signalling as well as the bundling 
of individual fibres11. Such changes in the 
physicochemical properties of the matrix can 
enhance cell proliferation and invasion in a 
positive feedback loop9. Whether stiffening 
of the stromal matrix occurs in other solid 
tumours, besides mammary tumours, remains 
to be determined. However, despite recent 
technological advances (TABLE 1), remarkably 
little is known about the molecular and 
physical mechanisms that drive motile 
cancer cells away from primary tumour 
and into the stromal space, especially at the 
subcellular level.

Motility in three dimensions. Much of what 
we have learned about the physical and 
molecular mechanisms driving normal 
and cancer cell motility has come from 
in vitro studies using two-dimensional (2D) 
substrates12–14. However, the dimensionality 
of the system used to study cancer invasion 
can have a key role in dictating the mode 
of cell migration. This is not entirely 
surprising as the three-dimensional (3D) 
microenvironment of the ECM in vivo is 
characterized by many features, including the 
pore size and fibre orientation, features that 
are not found in conventional ECM-coated 
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Abstract | Metastasis is a complex, multistep process responsible for >90% of 
cancer-related deaths. In addition to genetic and external environmental factors, 
the physical interactions of cancer cells with their microenvironment, as well as 
their modulation by mechanical forces, are key determinants of the metastatic 
process. We reconstruct the metastatic process and describe the importance of 
key physical and mechanical processes at each step of the cascade. The emerging 
insight into these physical interactions may help to solve some long-standing 
questions in disease progression and may lead to new approaches to developing 
cancer diagnostics and therapies.

Figure 1 | The metastatic process. In this complex process, cells detach from a primary, vascularized 
tumour, penetrate the surrounding tissue, enter nearby blood vessels (intravasation) and circulate in 
the vascular system. Some of these cells eventually adhere to blood vessel walls and are able to extrav-
asate and migrate into the local tissue, where they can form a secondary tumour.
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EMT. Opposing this function, multiple pro-angiogenic

proteins were increased, notably angiopoietin-1 (ANGPT1),
co-expression of thrombospondins together with the

ADAMTS1 protease [86] and VEGF-C.

Multiple receptor protein kinase networks were acti-
vated in the mesenchymal state. Autocrine Gas6 stimula-

tion of Axl and Tyro3 activity were established from array

and RT-PCR RNA abundance measurements. The data
suggest inhibitors of Axl and Tyro3 activity may show

utility in limiting the survival of shed mesenchymal-like

NSCLC cells. A functional role of autocrine Axl-Gas6
expression in lung [87] and breast cancer [88] progression

has been established. Autocrine activation of FGFR and

PDGFR signaling also was observed in both established
(H1703) and metastable TGFb models, supporting previous

findings [25, 89]. This increase in kinase activity and

PDGFR autophosphorylation was associated with
increased PDGFR and PDGF RNA transcripts. In meta-

stable Snail and Zeb1 models, FGFR1 and PDGFR tran-

scripts were markedly increased, PDGF was modestly
increased and FGF1 was unchanged or slightly decreased

(Supplementary Table S5). These data support the predic-

tion of kinase activation by autocrine co-expression of
receptor–ligand transcripts. We asked what functional

EMT dependent acquisition of ITGα5β1/FN and 
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observed. Downstream
activation of BRAF/MAPK1
and PTK2/paxillin signaling
were observed. Components in
green were attenuated during
EMT while those in light
brown/red were increased with
EMT. b Activating MAPK1/Erk
phosphorylation (T185/Y187),
associated with TGFb-induced
EMT, was confirmed by
immunoblot
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co-attenuated with the EMT-mediated reduction in Met,

Ron, EGFR and IGF1R kinase activation. These included

multiple SH2, cytoplasmic kinase and ubiquinylation
adapters: pSHC, pGrb2, pGAB1, pPTK6 (Brk), pUBB,

pUBIQ and pNCKAP1. We asked whether attenuated Met

phosphorylation might be attributable to reduced HGF

binding to Met. While no change in HGF transcript abun-

dance was observed, ST14 (matriptase), an extracellular
protease which promotes proHGF activation, was markedly

reduced. SPINT2 and SPINT1, which augment ST14
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Fig. 4 a Loss of autocrine RTK signaling networks through EGFR/
ErbB2/ErbB3, Met/Ron and IGF1R signaling networks. Attenuated
IL4R, Muc1 and Muc4 and integrin a6b4 components also were
observed. b Attenuated RTK tyrosine phosphorylation in H292 and
H358, (epithelial phenotype) Calu6 and H1703 (mesenchymal
phenotype) cell models were confirmed by quantitation of RTK
arrays. c EGFR is functional and responds to exogenous ligand in

both epithelial and mesenchymal states. H292 and H358, (epithelial)
Calu6 and H1703 (mesenchymal) cells were exposed to EGFR kinase
inhibitor (3 lM erlotinib, 2 h) or DMSO control prior to stimulation
with exogenous EGF (10 ng/ml, 10 min). The EGFR-dependent
inhibition of substrates CBL and SHC were similar in epithelial and
mesenchymal-like cells, relative for control HSPD1
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In the series of steps that comprise the 
metastatic process, cancer cells migrate or flow 
through vastly different microenvironments, 
including the stroma, the blood vessel 
endothelium, the vascular system and the 
tissue at a secondary site1,2 (FIG. 1). The ability 
to successfully negotiate each of these steps 
and advance towards the formation and 
growth of a secondary tumour is dependent, 
in part, on the physical interactions and 
mechanical forces between cancer cells  
and the microenvironment. For example, the 
physical interactions between a cell and  
the extracellular matrix — the collagen-rich 
scaffold on which it grows — have a key role 
in allowing cells to migrate from a tumour to 
nearby blood vessels. During intravasation 
and extravasation, cells must undergo large 
elastic deformations to penetrate endothelial 
cell–cell junctions. In the vascular system, 
the interplay between cell velocity and 
adhesion influences the binding of cancer 
cells to blood vessel walls and hence the 
location of sites where a secondary tumour 
can form and grow. A clearer understanding 
of the role of physical interactions and 
mechanical forces, and their interplay with 
biochemical changes, will provide new and 
important insights into the progression of 
cancer and may provide the basis for new 
therapeutic approaches.

Physical interactions in invasion
Following the growth of a primary tumour, 
the combination of continued tumour pro-
liferation, angiogenesis, accumulated genetic 
transformations and activation of complex 
signalling pathways trigger the metastatic 

cascade (FIG. 2). In particular, the detachment 
of carcinoma cells from the epithelium and 
the subsequent invasion of the underlying 
stroma resembles, at both the cellular and 
molecular levels, the well-characterized 
epithelial-to-mesenchymal transition (EMT) in 
embryogenesis3. The role of EMT in cancer 
metastasis is being actively explored4,5. 
Critical to EMT is the loss of E-cadherin 
(an intercellular adhesion molecule) and 
cytokeratins, which leads to dramatic changes 
in the physical and mechanical properties 
of cells: specifically, reduced intercellular 
adhesion and a morphological change from 
cuboidal epithelial to mesenchymal6. One 
consequence of these changes is detachment 
from the primary tumour and the acquisition 
of a motile phenotype5. These cells also 
begin to express matrix metalloproteinases 

(MMPs) on their surface, which promote 
the digestion of the laminin- and collagen 
IV-rich basement membrane7. After leaving 
the tumour microenvironment, motile 
tumour cells encounter the architecturally 
complex extracellular matrix (ECM), which 
is rich in collagen I and fibronectin8 (BOX 1). 
In the vicinity of a mammary tumour, the 
matrix is often stiffer than in normal tissue 
owing to enhanced collagen deposition9 and  
lysyl-oxidase-mediated crosslinking of 
the collagen fibres by tumour-associated 
fibroblasts10. Collagen crosslinking enhances 
integrin signalling as well as the bundling 
of individual fibres11. Such changes in the 
physicochemical properties of the matrix can 
enhance cell proliferation and invasion in a 
positive feedback loop9. Whether stiffening 
of the stromal matrix occurs in other solid 
tumours, besides mammary tumours, remains 
to be determined. However, despite recent 
technological advances (TABLE 1), remarkably 
little is known about the molecular and 
physical mechanisms that drive motile 
cancer cells away from primary tumour 
and into the stromal space, especially at the 
subcellular level.

Motility in three dimensions. Much of what 
we have learned about the physical and 
molecular mechanisms driving normal 
and cancer cell motility has come from 
in vitro studies using two-dimensional (2D) 
substrates12–14. However, the dimensionality 
of the system used to study cancer invasion 
can have a key role in dictating the mode 
of cell migration. This is not entirely 
surprising as the three-dimensional (3D) 
microenvironment of the ECM in vivo is 
characterized by many features, including the 
pore size and fibre orientation, features that 
are not found in conventional ECM-coated 
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Figure 1 | The metastatic process. In this complex process, cells detach from a primary, vascularized 
tumour, penetrate the surrounding tissue, enter nearby blood vessels (intravasation) and circulate in 
the vascular system. Some of these cells eventually adhere to blood vessel walls and are able to extrav-
asate and migrate into the local tissue, where they can form a secondary tumour.
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EMT. Opposing this function, multiple pro-angiogenic

proteins were increased, notably angiopoietin-1 (ANGPT1),
co-expression of thrombospondins together with the

ADAMTS1 protease [86] and VEGF-C.

Multiple receptor protein kinase networks were acti-
vated in the mesenchymal state. Autocrine Gas6 stimula-

tion of Axl and Tyro3 activity were established from array

and RT-PCR RNA abundance measurements. The data
suggest inhibitors of Axl and Tyro3 activity may show

utility in limiting the survival of shed mesenchymal-like

NSCLC cells. A functional role of autocrine Axl-Gas6
expression in lung [87] and breast cancer [88] progression

has been established. Autocrine activation of FGFR and

PDGFR signaling also was observed in both established
(H1703) and metastable TGFb models, supporting previous

findings [25, 89]. This increase in kinase activity and

PDGFR autophosphorylation was associated with
increased PDGFR and PDGF RNA transcripts. In meta-

stable Snail and Zeb1 models, FGFR1 and PDGFR tran-

scripts were markedly increased, PDGF was modestly
increased and FGF1 was unchanged or slightly decreased

(Supplementary Table S5). These data support the predic-

tion of kinase activation by autocrine co-expression of
receptor–ligand transcripts. We asked what functional
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phosphorylation might be attributable to reduced HGF
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Fig. 4 a Loss of autocrine RTK signaling networks through EGFR/
ErbB2/ErbB3, Met/Ron and IGF1R signaling networks. Attenuated
IL4R, Muc1 and Muc4 and integrin a6b4 components also were
observed. b Attenuated RTK tyrosine phosphorylation in H292 and
H358, (epithelial phenotype) Calu6 and H1703 (mesenchymal
phenotype) cell models were confirmed by quantitation of RTK
arrays. c EGFR is functional and responds to exogenous ligand in

both epithelial and mesenchymal states. H292 and H358, (epithelial)
Calu6 and H1703 (mesenchymal) cells were exposed to EGFR kinase
inhibitor (3 lM erlotinib, 2 h) or DMSO control prior to stimulation
with exogenous EGF (10 ng/ml, 10 min). The EGFR-dependent
inhibition of substrates CBL and SHC were similar in epithelial and
mesenchymal-like cells, relative for control HSPD1
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Targeting invasion-specific signaling may 
considerably improve survival

Thomson et al, Clin Exp Metastasis, 2010



Targeting AXL has minor 
effects on the primary tumor

Gjerdrum et al, PNAS, 2010
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Structure of AXL/Gas6 complex
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The systems approach to 
studying cell phenotype
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EGFR activation leads to 
AXL crosstalk

AXL with Gas6 did not elicit a substantial signaling response, and these
signaling consequences were small compared with EGF-elicited, AXL-
dependent signaling effects (fig. S3E). This observation is similar to results
in other studies of Gas6-elicited signaling inMDA-MB-231 (44). Why dif-
ferent cell lines display markedly distinct receptor activation patterns to
Gas6 remains a question for future studies (44–46).

To investigate the crosstalk between AXL and EGFR (as well as MET)
signaling further, we next examined the ratio of fold activation (phosphoryl-
ation) of various signaling proteins in the absence versus presence of AXL
(Fig. 3A). The unstimulated conditions represented signaling network
activity presumably arising from constitutive autocrine processes. This
analysis revealed more widespread AXL-dependent effects in EGF- or
TGFa-stimulated cells compared with HGF-stimulated cells, with the largest
difference in activation observed for GSK3 (glycogen synthase kinase 3)
and Akt. Further, the relative magnitude of effects across the phosphosites
investigated was correlated between EGF- or TGFa-stimulated cells and
unstimulated cells but was not correlated between HGF-stimulated and
unstimulated cells (Fig. 3A, inset). These results suggest that AXL may
mediate similar basal and EGFR-stimulated signaling pathways in TNBC
cells, whereas HGF yields a distinct downstream AXL-mediated signature.

We then performed principal components analysis (PCA) to gain insight
concerning the network-level variation in signaling across these treatment
conditions (Fig. 3B). Principal component 1 (PC1)was found to correspond
to EGF-induced signaling, and PC2 to HGF-elicited signaling, with TGFa
having an intermediate effect. Knockdown of AXL moved cells negatively
along PC1 and reduced the magnitude of the effect of EGF stimulation. Ex-
amination of the loading plot revealed separation between phosphosites

only mildly affected by knockdown [for example, phosphorylation of
STAT3 (signal transducer and activator of transcription 3) and JNK
(c-JunN-terminal kinase)] and those strongly affected (such as the phospho-
rylation of Akt and GSK3), with the rest scattered at intermediate locations
(Fig. 3C). Together, these data indicate that EGF and TGFa induce ErbB-
mediated downstream signaling that is qualitatively similar to basal
signaling but is distinct from MET-mediated signaling, and this baseline-
like signaling is disrupted by AXL knockdown. The difference between
HGFand EGF, TGFa, and baseline signaling is likely a result of the absence
of signaling from EGFR, HER2, or AXL in the former case, because MET
is presumably transactivated also in the EGF- or TGFa-stimulated cases.
An appealing interpretation is that autocrine EGFR ligand activity is consti-
tutive and transactivates AXL.

AXL amplifies signaling in the EGFR-associated pathway
but does not sensitize EGFR to its ligand
Because receptor activation can be quantitatively characterized in terms of
ligand concentration–related sensitivity and maximal activation at satura-
tion, we investigated how AXL influences the dose response of EGFR to
EGF. We stimulated MDA-MB-231 cells with a range of concentrations of
EGFandmeasured the pan-phosphotyrosine on EGFR and the phosphoryl-
ation of Akt (Fig. 4, A and B). Phosphorylation of Akt was chosen for mea-
surement as a critical downstream signal that was strongly influenced by
AXL knockdown, though not to imply that all transactivation-mediated
effects are regulated throughAkt alone (Fig. 3C). Phosphorylation of EGFR
was unaffected by AXL knockdown except at very high (above saturating)
EGF concentrations (Fig. 4A), likely as a result of altered trafficking or
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Fig. 2. EGF stimulation transactivates AXL andMET. (A) ELISA-based pan-
phosphotyrosine (pan-pY) measurement of alternative receptors after EGF
stimulation inMDA-MB-231 (*P<0.05, Student’s t test). (B) AXL knockdown,
measured by ELISA. (C) Total and surface amounts of alternative receptors
in AXL-silenced MDA-MB-231 cells (*P < 0.05, Student’s t test). Data are

means ± SEM of three biological measurements. (D) Downstream
signaling assessed by kinase phosphorylation in MDA-MB-231 cells
5 min after stimulation with EGF, TGFa, or HGF in the presence or
absence (siAXL) of AXL. Each phosphosite was mean-centered and
variance-normalized.
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AXL with Gas6 did not elicit a substantial signaling response, and these
signaling consequences were small compared with EGF-elicited, AXL-
dependent signaling effects (fig. S3E). This observation is similar to results
in other studies of Gas6-elicited signaling inMDA-MB-231 (44). Why dif-
ferent cell lines display markedly distinct receptor activation patterns to
Gas6 remains a question for future studies (44–46).

To investigate the crosstalk between AXL and EGFR (as well as MET)
signaling further, we next examined the ratio of fold activation (phosphoryl-
ation) of various signaling proteins in the absence versus presence of AXL
(Fig. 3A). The unstimulated conditions represented signaling network
activity presumably arising from constitutive autocrine processes. This
analysis revealed more widespread AXL-dependent effects in EGF- or
TGFa-stimulated cells compared with HGF-stimulated cells, with the largest
difference in activation observed for GSK3 (glycogen synthase kinase 3)
and Akt. Further, the relative magnitude of effects across the phosphosites
investigated was correlated between EGF- or TGFa-stimulated cells and
unstimulated cells but was not correlated between HGF-stimulated and
unstimulated cells (Fig. 3A, inset). These results suggest that AXL may
mediate similar basal and EGFR-stimulated signaling pathways in TNBC
cells, whereas HGF yields a distinct downstream AXL-mediated signature.

We then performed principal components analysis (PCA) to gain insight
concerning the network-level variation in signaling across these treatment
conditions (Fig. 3B). Principal component 1 (PC1)was found to correspond
to EGF-induced signaling, and PC2 to HGF-elicited signaling, with TGFa
having an intermediate effect. Knockdown of AXL moved cells negatively
along PC1 and reduced the magnitude of the effect of EGF stimulation. Ex-
amination of the loading plot revealed separation between phosphosites

only mildly affected by knockdown [for example, phosphorylation of
STAT3 (signal transducer and activator of transcription 3) and JNK
(c-JunN-terminal kinase)] and those strongly affected (such as the phospho-
rylation of Akt and GSK3), with the rest scattered at intermediate locations
(Fig. 3C). Together, these data indicate that EGF and TGFa induce ErbB-
mediated downstream signaling that is qualitatively similar to basal
signaling but is distinct from MET-mediated signaling, and this baseline-
like signaling is disrupted by AXL knockdown. The difference between
HGFand EGF, TGFa, and baseline signaling is likely a result of the absence
of signaling from EGFR, HER2, or AXL in the former case, because MET
is presumably transactivated also in the EGF- or TGFa-stimulated cases.
An appealing interpretation is that autocrine EGFR ligand activity is consti-
tutive and transactivates AXL.

AXL amplifies signaling in the EGFR-associated pathway
but does not sensitize EGFR to its ligand
Because receptor activation can be quantitatively characterized in terms of
ligand concentration–related sensitivity and maximal activation at satura-
tion, we investigated how AXL influences the dose response of EGFR to
EGF. We stimulated MDA-MB-231 cells with a range of concentrations of
EGFandmeasured the pan-phosphotyrosine on EGFR and the phosphoryl-
ation of Akt (Fig. 4, A and B). Phosphorylation of Akt was chosen for mea-
surement as a critical downstream signal that was strongly influenced by
AXL knockdown, though not to imply that all transactivation-mediated
effects are regulated throughAkt alone (Fig. 3C). Phosphorylation of EGFR
was unaffected by AXL knockdown except at very high (above saturating)
EGF concentrations (Fig. 4A), likely as a result of altered trafficking or
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Fig. 2. EGF stimulation transactivates AXL andMET. (A) ELISA-based pan-
phosphotyrosine (pan-pY) measurement of alternative receptors after EGF
stimulation inMDA-MB-231 (*P<0.05, Student’s t test). (B) AXL knockdown,
measured by ELISA. (C) Total and surface amounts of alternative receptors
in AXL-silenced MDA-MB-231 cells (*P < 0.05, Student’s t test). Data are

means ± SEM of three biological measurements. (D) Downstream
signaling assessed by kinase phosphorylation in MDA-MB-231 cells
5 min after stimulation with EGF, TGFa, or HGF in the presence or
absence (siAXL) of AXL. Each phosphosite was mean-centered and
variance-normalized.
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transactivation effect

cellular processes induced at such nonphysiological amounts of stimulation.
Other receptor-proximal components, such as the adaptor protein SHC and
the CDC2 kinase, exhibited similar phosphorylation after stimulation at the
EGF dose used in the signaling studies here (fig. S4). In contrast, AXL
knockdown affected the phosphorylation of Akt in response to all doses
of EGF by a shift inmagnitude (“vertically”) rather than in sensitivity (“hor-
izontally”) (Fig. 4B). To deconvolve these concomitant changes in the phos-
phorylation of EGFR andAkt, we plotted the abundance of phosphorylated
Akt as a function of phosphorylated EGFR in cells treated with either con-
trol siRNA or AXL siRNA (Fig. 4C). This revealed a uniform downward
shift across all stimulation amounts in the absence of AXL, indicating a
consistent fold change in the magnitude of signal transduction. Each curve
could bewell described to first approximation by a Hill function, with com-
parable Kd (threshold of half-maximal activation) but markedly different
maximal activation (Fig. 4D). To identify the level at which this regulation
may occur, we fit these data to alternative models of signal transduction
from the receptor layer (see Materials and Methods). The data were best
explained by a model in which basal and stimulated AXL activities exist,
the latter in proportion to EGFRactivation and inwhich transduction of both

signals occurs through separately saturable processes (table S3). Thismodel
is consistent with our biochemical observations (Fig. 2A). The effect of
baseline activation ofAXLcan be observed from the plot of phosphorylated
Akt as a function of pan-phosphotyrosine EGFR, where at low EGFR ac-
tivation in the presence ofAXL, the phosphorylation ofAktwas higher than
a simpleHill regressionwould suggest (Fig. 4C). Biologically, this indicates
that the components downstream of the receptor are saturated by maximal
EGFR activation and that, at least with respect to phosphorylated Akt, the
transactivation of AXL increases the effective amount of RTK signaling and
amplifies the signaling consequence of stimulation.

Multipathway signaling correctly predicts AXL
knockdown inhibition of EGF-stimulated protrusion
We next asked how the broad effects on signaling that resulted from AXL
knockdown might influence the migration behavior of cells. We elected to
use acute membrane protrusion as a surrogate measurement of three-
dimensional migratory capacity on the basis of our previous findings that
this assay corresponds well to growth factor–stimulated invasive motility
within extracellular matrix (47). Protrusion measurements from wild-type
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Unstim]) ÷ ([siControl GF]/[siControl Unstim]). The unstimulated bar in-
dicates the ratio of unstimulated abundance: [siAXL Unstim]/[siControl

Unstim]. Inset shows the Spearman correlation across all phosphosites
between the unstimulated and stimulated ratios (*P < 0.05). (B) PCA score
plot of signaling data after AXL knockdown. Line colors indicate stimulation
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Crosstalk quantitatively amplifies a 
qualitatively distinct set of pathways

MDA-MB-231 cells were used to train a family of partial least-squares re-
gression models for how protrusion activity depends on multiple phospho-
proteomic signals. Minimal models that use only three signals were
examined to ascertain the most vital pathway predictors for growth
factor–induced motility. We identified models that fit the data by cross-
validation (Q2 > 0.6) and found that these were enriched in inclusion of
GSK3, STAT3, and Akt as the key predictor signals (fig. S5A). These
models involved similar weights for the predictor signals in both PCs,
demonstrating consistency across the ensemble of top-fitting models in
their multipathway signaling-to-protrusion relationships (Fig. 5A).

This ensemble of models was then used to predict wild-typeMDA-MB-
231 protrusion by cross-validation and to a priori predict protrusion mod-
ulation by AXL knockdown (Fig. 5B). EGF-stimulated protrusion was
predicted to be the most substantially attenuated response after AXL
knockdown, whereas HGF-stimulated protrusion was predicted to remain
essentially unaffected. These predictions were indeed correct inMDA-MB-
231 cells transfected with AXL siRNA: HGF-elicited protrusion was not
significantly affected, whereas EGF-elicited protrusionwas significantly re-
duced (Fig. 5C). Treatment with R428 confirmed that EGF-stimulated pro-
trusion depended on AXL-mediated signaling in another TNBC line,
MDA-MB-157, but that it did not in two other breast cancer cell lines,
MCF7 and T47D, which lack AXL expression (Fig. 5D). The effect of
R428 phenocopied that of AXL siRNA treatment in terms of the protrusion
response to EGF inMDA-MB-231 cells (Fig. 5, C andD). TGFa-stimulated

protrusion was also reduced in MDA-MB-231 cells by R428 treatment, al-
though to a lesser degree, which was in accord with our model predictions
(fig. S5B). These results indicate that along with amplification of EGFR-
induced downstream signaling, the transactivation of AXL additionally
activates a qualitatively distinct set of signals that are important for cell
migration in response to stimuli. Moreover, our three-pathway partial least-
squares regression model successfully captured the integrated effects of
these signals on this phenotypic response.

AXL is in proximity to ErbB and MET but not IGF1R or IR
We investigated whether the transactivation of AXL (and MET) by EGFR
might involve physicochemical proximity of these RTKs. Because of tech-
nical limitations in capability for distinguishing receptor colocalization by
other methods (fig. S6, A and B), we used a technique in which immuno-
precipitation of cross-linked receptors from lysate was performed in a
multiplexed fashion on barcoded fluorescent beads. The degree of AXL
cross-linking with each of various other RTKs was quantified using an
AXL antibody (Fig. 6A). Across multiple cell lines, we observed a signif-
icant degree of AXL cross-linking with ErbB receptors, MET, and PDGFR
but not with insulin receptor (INSR) or IGF1R (Fig. 6B and fig. S6C). The
amount of AXL cross-linkingwas roughly proportional to the abundance of
that particular RTK—with the exception of INSR and IGF1R, neither of
which garnered cross-linked AXL to a measureable extent (Fig. 6C). We
confirmed cross-linking results with reciprocal immunoprecipitation assays
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with SE of biological triplicate measurements. (D) Hill regression of each plot
shows similar Kd values but significantly different maximal activation (F test).
Error bars indicate SE of the fit.
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forE, the value ofEwas calculated with lsqnonlin by solving for the value
that minimizes:
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Fitting was performed with the nlinfit function within MatLab with ini-
tial parameters identified by inspection of the single drug data.Optimization
was unconstrained, but IC50 values were in all cases significantly positive,
and all m values were significantly negative as verification of effective
fitting. Confidence intervals presentedwere calculated from the empirically
derived Jacobianwith the nlparci function. Significancewas separately ver-
ified by jackknife (60).

Partial least-squares regression and PCA
Replicate measurements were averaged, and each signaling variable was
mean-centered and variance-normalized before further analysis. PCAwas
performed with singular value decomposition within the pca function. The
first two components explained 83% of the variance.

For reduced partial least-squares modeling, the output variable was
assembled from mean protrusion measurements for each growth factor,
and the unstimulated condition set to 0. Model reduction was performed
by training models with all possible combinations of three input variable
sets. Three variables were chosen, as it was the smallest model size with
sufficient well-trained models to ensure robust variable enrichment. Model
reduction with larger reducedmodels produced qualitatively similar results.
Each individual reducedmodelwas then used concomitantly, and the results
were shown by displaying the average and SE of loading values and pre-
dictions. As a result of variation in baseline signaling, predictions for
knockdown cells were taken to be the prediction for the knockdown and
stimulated conditionminus the prediction of the knockdown and unstimu-
lated condition.

Amplification modeling
Each model was fit with the nlinfit function. To ensure robustness with
respect to initial parameter selection, fitting was performed 100 times
with randomly selected initial parameters within the range of feasible
values. x is 0 with AXL knocked down and 1 with AXL present. [pEGFR]
and [pAkt] are from measurements of pan-phosphotyrosine EGFR and pAkt
across a dose range of EGF.Models were compared using the corrected and
uncorrected Akaike information criterion denoted AICc and AIC, respec-
tively (61).

To fit data to a model in which activation of AXL is in proportion to
EGFR activation, and signaling integration is receptor-proximal, Eq. 1
was used:

½pAkt" ¼ Bmax ð½pEGFR" þ a½pEGFR"xÞ
KD þ ð½pEGFR" þ a½pEGFR"xÞ

þ B0

For amodel inwhich amplification ofAkt activationwith respect to a set
amount of EGFR activity, and AXL only affects this proportional relation-
ship, Eq. 2 was used:

½pAkt" ¼ Bmax ð1þ axÞ½pEGFR"
KD þ ½pEGFR"

þ B0

For a model in which no signaling effect from AXL exists, Eq. 3 was
used:

½pAkt" ¼ Bmax ½pEGFR"
KD þ ½pEGFR"

þ B0

For a model in which some baseline activation of AXL is possible in
addition to proportional activation, and signaling integration is receptor-
proximal, Eq. 4 was used:

½pAkt" ¼ Bmax ð½pEGFR" þ a½pEGFR"xþ xbÞ
KD þ ð½pEGFR" þ a½pEGFR"xþ xbÞ

þ B0

For a model in which Akt activated by AXL and activated by EGFR is
summed, with proportional activation of AXL, Eq. 5 was used:

½pAkt" ¼
Bmax,1½pEGFR"
KD,1 þ ½pEGFR"

þ
xBmax,2½pEGFR"
KD,2 þ ½pEGFR"

B0

For a model in which no signaling effect from AXL through EGFR
pathway exists, but there is a baseline effect ofAXLpresent, Eq. 6was used:

½pAkt" ¼ Bmax½pEGFR"
KD þ ½pEGFR"

þ xbþ B0

For a model with only baseline activation of AXL, and signaling
integration is receptor-proximal, Eq. 7 was used:

½pAkt" ¼ Bmax½pEGFR" þ ax
KD þ ½pEGFR" þ ax

þ B0

For a model with Akt activated by AXL and activated by EGFR
summed, with proportional and baseline activation of AXL, Eq. 8
was used:

½pAkt" ¼
Bmax,1½pEGFR"
KD,1 þ ½pEGFR"

þ
xBmax,2ð½pEGFR" þ bÞ
KD,2 þ ð½pEGFR" þ bÞ

Total receptor quantification
Total receptor amounts were measured with a bead-based ELISA (Novagen).
For quantification of AXL and MER, established ELISA antibodies and
standards (R&D Systems) were used. The capture antibody was conjugated
to unconjugated beads (Bio-Rad) and used in a multiplexed fashion with the
other targets. Linearity of the assay was validated during measurement by
dilution series of both the lysates and standards.

Each cell linewas seeded sparsely, and the next daywas starved for 4 hours
and lysed. Receptor measurements were normalized to total protein content to
provide a receptormass fraction (that is, femtogramof receptor permilligramof
cell lysate). Thismass fractionwas used in all subsequentmodeling. For recep-
tor density calculations, a subconfluent plate of cellswas trypsinized, thenumber
of cells was counted and lysed, and total protein was quantified. This provided
theconversion, for each cell line, frommilligramof lysate to number of cells.
Combined with the known mass of each receptor, a value could then be con-
verted tonumber of receptors per cell. Finally, receptor densitywas calculatedby
using the surface area of a HeLa cell [1600 µm2, BNID 103718 (62)].

Assay selection
Todeterminewhichmethodsmight be suitable for studying such complexes
on the cell surface, we developed a simple statistical model to describe the
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AXL is required for  
EGF-elicited protrusion

in MDA-MB-231, in which we observed the association of AXL with
EGFR but not with IGF1R (fig. S6D).

On the basis of these data, we sought a quantitative framework to under-
stand the respective amounts of complexing observed between AXL and
eachRTKacross different cell lines.According to fundamental stoichiomet-
ric considerations, the amount of AXL observed in complex with a partic-
ular RTK in a particular cell line should be approximately the product of the
RTK abundance in that cell line, with proportionality described by coeffi-
cients constituting (i) the cross-linking and protein loading efficiency and
(ii) the antibody immunoprecipitation efficiencies and extent of colocaliza-
tion.Withmeasurements of RTKabundance and the amount cross-linked to
AXL, we determined the remaining parameters (see Materials and
Methods) to provide away to account for differences in receptor expression
when interpreting cross-linking data (fig. S6D). With this quantitative for-
mulation, we could then calculate whether the parameter characterizing
AXL/RTK colocalization deviated significantly from 0 for each RTK
(Fig. 6D). Significant deviation from 0 indicates colocalization. Despite
IGF1R and INSR being substantively abundant in various cell lines, the
calculated likelihood that they localized with AXL was not significant. Al-
though this parameter includes the efficiency of immunoprecipitating

IGF1R or INSR, we verified that these two receptors were detected with
similar efficiency both by direct ELISAof the same cell lysates and by quan-
tification of a recombinant standard.We additionally confirmed cross-linked
immunoprecipitation betweenAXLandEGFR to the exclusion of IGF1Rby
reciprocal immunoprecipitation in MDA-MB-231 (fig. S6E). Our quantita-
tive analysis framework ruled out the possibility that merely low abundance
of IGF1R and INSR was a trivial explanation for the absence of significant
colocalization. We therefore conclude that AXL is colocalized with ErbB,
MET, and PDGFR but not with IGF1R or INSR.

The amount of EGFR-AXL complex was much greater in MDA-MB-
231 than in other cell lines, likely as a result of the differences in abundance
of EGFR (Fig. 6C).MCF7 cells transfectedwithAXLand treatedwith EGF
showed no synergistic response characteristic of receptor transactivation,
consistent with the relatively little EGF-elicited signaling overall (fig.
S7A). We therefore considered whether we could predict the importance
of AXL transactivation induced by activation of RTKs other than EGFR.
MDA-MB-453 cells have large amounts of HER2 and HER3 in complex
withAXL, so our notionwould predict that AXL signalingmight contribute
to a heregulin (HRG)–stimulated response in these cells. We learned by
direct test, using AXL transfection and HRG treatment, that this is in fact
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Fig. 5. AXL signaling is required for EGF-elicited protrusion. (A) Mean load-
ings of the reduced partial least-squares regression models. The red point
corresponds to theprojectionof the phenotype. Error bars indicate the SE for
the family of reducedmodels. (B) Protrusion predictions from reducedpartial
least-squares regressionmodels for wild-type (by cross-validation) and AXL
knockdown (by prediction) cells. Error bars indicate the SE of prediction

across the family of reduced models. (C) EGF-elicited protrusion response
of MDA-MB-231 cells upon AXL knockdown (***P < 0.001, Mann-Whitney
test; n= 13 to 25 from three independent experiments). (D) EGF-elicited pro-
trusion responses with or without 0.3 mM R428 (***P < 0.001, Mann-Whitney
test; n = 17 to 35 from three independent experiments). MDA-MB-231 and
MDA-MB-157 cells express AXL, whereas MCF7 and T47D cells do not.
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in MDA-MB-231, in which we observed the association of AXL with
EGFR but not with IGF1R (fig. S6D).

On the basis of these data, we sought a quantitative framework to under-
stand the respective amounts of complexing observed between AXL and
eachRTKacross different cell lines.According to fundamental stoichiomet-
ric considerations, the amount of AXL observed in complex with a partic-
ular RTK in a particular cell line should be approximately the product of the
RTK abundance in that cell line, with proportionality described by coeffi-
cients constituting (i) the cross-linking and protein loading efficiency and
(ii) the antibody immunoprecipitation efficiencies and extent of colocaliza-
tion.Withmeasurements of RTKabundance and the amount cross-linked to
AXL, we determined the remaining parameters (see Materials and
Methods) to provide away to account for differences in receptor expression
when interpreting cross-linking data (fig. S6D). With this quantitative for-
mulation, we could then calculate whether the parameter characterizing
AXL/RTK colocalization deviated significantly from 0 for each RTK
(Fig. 6D). Significant deviation from 0 indicates colocalization. Despite
IGF1R and INSR being substantively abundant in various cell lines, the
calculated likelihood that they localized with AXL was not significant. Al-
though this parameter includes the efficiency of immunoprecipitating

IGF1R or INSR, we verified that these two receptors were detected with
similar efficiency both by direct ELISAof the same cell lysates and by quan-
tification of a recombinant standard.We additionally confirmed cross-linked
immunoprecipitation betweenAXLandEGFR to the exclusion of IGF1Rby
reciprocal immunoprecipitation in MDA-MB-231 (fig. S6E). Our quantita-
tive analysis framework ruled out the possibility that merely low abundance
of IGF1R and INSR was a trivial explanation for the absence of significant
colocalization. We therefore conclude that AXL is colocalized with ErbB,
MET, and PDGFR but not with IGF1R or INSR.

The amount of EGFR-AXL complex was much greater in MDA-MB-
231 than in other cell lines, likely as a result of the differences in abundance
of EGFR (Fig. 6C).MCF7 cells transfectedwithAXLand treatedwith EGF
showed no synergistic response characteristic of receptor transactivation,
consistent with the relatively little EGF-elicited signaling overall (fig.
S7A). We therefore considered whether we could predict the importance
of AXL transactivation induced by activation of RTKs other than EGFR.
MDA-MB-453 cells have large amounts of HER2 and HER3 in complex
withAXL, so our notionwould predict that AXL signalingmight contribute
to a heregulin (HRG)–stimulated response in these cells. We learned by
direct test, using AXL transfection and HRG treatment, that this is in fact
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Fig. 5. AXL signaling is required for EGF-elicited protrusion. (A) Mean load-
ings of the reduced partial least-squares regression models. The red point
corresponds to theprojectionof the phenotype. Error bars indicate the SE for
the family of reducedmodels. (B) Protrusion predictions from reducedpartial
least-squares regressionmodels for wild-type (by cross-validation) and AXL
knockdown (by prediction) cells. Error bars indicate the SE of prediction

across the family of reduced models. (C) EGF-elicited protrusion response
of MDA-MB-231 cells upon AXL knockdown (***P < 0.001, Mann-Whitney
test; n= 13 to 25 from three independent experiments). (D) EGF-elicited pro-
trusion responses with or without 0.3 mM R428 (***P < 0.001, Mann-Whitney
test; n = 17 to 35 from three independent experiments). MDA-MB-231 and
MDA-MB-157 cells express AXL, whereas MCF7 and T47D cells do not.
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Meyer et al, Sci Sig, 2013



How do TAM receptors process extracellular cues?

Environment/Cues Cell Signaling Migration 
response

Quantitatively understanding 
3D cell migration regulation



Conundrum: AXL does not robustly 
respond to ligand stimulation
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Attributes of a good sensor
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Input Output

Large dynamic range



Attributes of a good sensor

0 1 2 3 4 0 1 2 3 4

Input Output

Rapid response



Attributes of a good sensor

0 1 2 3 4 0 1 2 3 4

Input Output

Memoryless



Many RTKs can be considered as 
“ligand concentration sensors”

100 ng/mL EGF/IGF1, 50 ng/mL HGF, hMLE-Twist1 Kim et al, Mol Cell Proteomics, 2011



Gas6 stimulation reveals 
complex response patterns
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AXL still poorly responsive to 
Gas6 at longer times

BT549

0.0

0.5

1.0

1.5

2.0

Fo
ld

 U
ns

tim
ul

at
ed

0 0.156 0.625 2.5
Gas6 (nM)

A172

0

2

4

6

8

Fo
ld

 U
ns

tim
ul

at
ed

0 0.156 0.625 2.5
Gas6 (nM)

pY
Total

pY/Total

A549

0

1

2

3

4

Fo
ld

 U
ns

tim
ul

at
ed

0 0.156 0.625 2.5
Gas6 (nM)

U87

0

2

4

6

8

10

Fo
ld

 U
ns

tim
ul

at
ed

0 0.156 0.625 2.5
Gas6 (nM)4 hrs stimulation



Structure of AXL/Gas6 complex

Gas6

AXL

EGF domains

Gla domain

Fn domains

SHBD domains

Ig domains

Sasaki et al, EMBO J, 2006



A differential equation model 
of receptor activation
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TAM kinetic model allows 
mechanistic interpretation



AXL has a limited rapid 
response to stimulation
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Ptds Exposure is a Spatially 
Localized Process

Ruggiero et al, PNAS, 2012

10 µm

Exposed Ptds 
Membrane

5 µm



Perhaps robust receptor activation only 
occurs in response to local stimulation?

Cell debris

AXL expressing cell



Local stimulation shifts 
species abundance
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Local stimulation strongly 
promotes local AXL signaling
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Local stimulation results in 
greater overall AXL signaling
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Local stimulation results in 
greater overall AXL signaling

20 ng/mL Gas6; 1X lipid: 100 μg/mL 5:3:2 w/w PE:PS:PC

(Adapted from Wikipedia)



Synergistic activation is 
specifically due to local stimulation
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AXL is a sensor of ligand 
spatial heterogeneity

Low Gas6 High Gas6

Localized Gas6



Conclusion
• AXL transactivation leads to selective pathway 

amplification 

• AXL-expressing cells rely on the receptor for robust 
migration response 

• TAM receptors most robustly sense local ligand 
stimulation 

• A quantitative model of AXL activation can be used to 
predict the consequence of novel interventions



Future directions

• Use the TAM signaling model to understand 
transactivation 

• Model expansion to the full TAM family 

• Rational design of improved TAM-targeted therapies 

• Evaluation of TAM-mediated immune targeting
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