
Introduction
We appreciate the exceedingly positive and helpful comments from the previous study section and agree that
overcoming bypass mechanisms in cancer will be critical for targeted therapy efficacy. An important contributor
to this form of resistance is the AXL receptor, and a better understanding of how, when and where to target this
and the other RTKs has the potential for considerable impact. For this, we have assembled a team with extensive
computational, proteomic, and clinical expertise that would fit well into and benefit the CSBC. The data assembled
here will provide a valuable and unique proteomic dataset that will be made immediately available for further
analysis. As noted, this proposal is highly innovative on both the technical and conceptual frameworks. The use of
a variety of different assays in cell lines and PDX models should provide a comprehensive dataset of immense
value to the consortium. The reviewers included a number of minor concerns we wish to address here and with
targeted changes throughout our proposal; we appreciate these constructive points and agree these are minor in
the context of the overall proposal:
Reliance on cell lines in the experimental approach We recognize that experiments in established cancer cell
lines raise concerns about their applicability to human cancers. Although not perfect, cell lines are necessary for
the functional data generated by Aims 1 & 2 which aids prioritization of RTK-adapter interactions prior to our PDX
studies. In addition to our cell line functional studies we have proposed critical validation experiments
using PDX models, meant to ensure the relevance of our findings. Through our collaboration, we can also
examine human tumor tissues.
Minor concern—use of overexpression In our work with AP-MS we use retroviral vectors, and we find these
express receptors to frequently observed endogenous levels. Overexpression is a common misconception since
a frequent approach is to use transient transfection of irrelevant cell lines like H293 which produce a huge
amount of overexpressed protein and likely induce spurious interactions. In Dr. Haura’s recent EGFR interactome
paper, western blots show exogenous baited protein was expressed at comparable levels to that observed
endogenously1,2. We will also verify the expression level we obtain matches endogenous levels observed.
Minor concern—use of RNAi We have adjusted our approach to use CRISPR-mediated knockdown and
knockout in parallel, with RNAi as a backup strategy. We also wish to point out that the conclusions of our study are
not directly based on the effects of these reagents on cell response. Where these reagents are used for validation
of RTK-adapter interactions, we are additionally measuring the molecular consequences of these interventions
and ensuring the paired molecular/cellular effects are consistent with our model.
A minor weakness—adequate but not particularly innovative modeling While new algorithm development
is not the central focus of this proposal, we note that innovative application of modeling techniques is an essential
component. Non-identifiability is a problem throughout high-dimensional data-driven analysis. Too often only the
maximum likelihood or average model is explored. As noted in §1.3, we plan to use Monte Carlo sampling of our
model’s posterior distribution, and then to interpret and validate the predictions of families of models. Particularly
for high-dimensional data as collected here, this is an innovative approach that will be critical to the reproducibility
and subsequent impact on the field. We have provided greater detail for the modeling throughout.
Dependence on RTK inhibition may be problematic if resistance occurs via multi-RTK co-activation. Dy-
namics of resistance development & RTK network evolution is not clearly addressed. We concur that
multi-RTK dependence may present a challenge. Importantly, in Aim 3, while we will only select pairs of inhibitor
treatments to test experimentally, we will have quantitation of RTK activation for a wider panel of receptors. We
will therefore be able to identify if, for example, activation of >2 RTKs predicts poor response. The framework
presented here will be critical for identifying approaches for targeting RTK co-activation (Fig. 3). Lastly, the studies
here lay groundwork for understanding the dynamic nature of resistance development in a more mechanistic
fashion, but we also plan to examine each PDX model before and after treatment to understand the PDX evolution.
Unclear how invasion will be worked into the existing dataset We agree that incorporating invasion previ-
ously was ancillary to the core goals of this study and have focused our proposal.
Additional preliminary data would help assess power of approach Due to space constraints, much of the
preliminary data was included in a manuscript included as an appendix. This study, now published, shows the
power of our overall approach for finding key molecular events governing bypass resistance development3. We
have added some additional data to reduce the risk of this study (Figs. 3, 6, 2A). This data, in combination with the
expertise this collaboration provides, gives us confidence in the impact this study will have on our understanding
and ability to overcome bypass resistance.
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Figure 1: Integrated strategy to map RTK-adapter interactions to
promoting resistance. mass spectrometry (MS)-based global

phosphorylation and RTK-adapter interaction will be assessed
across conditions with variable RTK-mediated bypass resistance.
Machine learning will be used to integrate this data and identify

critical interactions for measurement to predict combination
treatments. These measurements will be assessed for precisely

identifying combination therapies in individual patient-derived
xenograft (PDX) tumors.

Combination therapy holds considerable promise
for overcoming intrinsic and acquired resistance to
targeted therapies but relies on our ability to pre-
cisely identify the best drug combination for partic-
ular tumors. While immense focus exists on using
genomic information to direct therapeutic approach,
many resistance mechanisms can also arise from
entirely tumor-extrinsic factors within the microenvi-
ronment. The receptor tyrosine kinase (RTK) AXL is
widely implicated in resistance to targeted therapies
such as those directed against EGFR. Regulation of
AXL by phosphatidylserine (PS), as opposed to mu-
tation, amplification or autocrine ligand, make iden-
tifying the tumors that will respond to AXL-targeted
therapy especially challenging4.

We propose to study both downstream and
receptor-proximal signaling during bypass resis-
tance mediated by AXL, and then across a wider
panel of RTKs. Integrating these measurements
with quantitative modeling will identify the connec-
tivity between receptors, interacting adapters, and
downstream signaling events, thereby defining the
essential set of signaling network changes required
for tumor cell survival in response to targeted thera-
peutics. We will then apply this understanding by measuring RTK-adapter interaction using proximity ligation (PLA)
to predict RTKs driving bypass resistance and test these predictions in a panel of PDX tumors.

Aim 1: Map the global signaling state changes during switched RTK activation to identify the essential
features of bypass resistance Hypothesis: Context-dependent differences in the resistance-promoting capacity
of RTKs can be explained by their downstream pathway activation potential.
• Functionally evaluate the ability of each RTK and AXL mutant to promote resistance in each cell line model
• Measure the global signaling network state of cells with RTK-induced bypass resistance
• Identify the conserved elements promoting resistance by multivariate statistical modeling
• Validate model predictions of the relationship between signaling network state and resistance

Aim 2: Quantify the corresponding RTK interaction profiles to identify the requisite receptor-level interac-
tions promoting resistance Hypothesis: Specific RTK-proximal interactions drive bypass resistance-mediated
survival.
• Quantify the complement of receptor-interacting proteins during bypass-mediated resistance
• Correlate adapter interactions and downstream pathway activation to map the downstream consequences of

receptor-proximal signaling
• Validate the role of particular adapter interactions in driving therapeutic resistance

Aim 3: Evaluate multiplexed protein interaction measurement as an effective method to predict resistance
mechanism Hypothesis: Coordinate measurement of RTK-adapter protein interactions are more predictive of
effective drug combinations than receptor expression or activation levels alone.
• Validate proximity ligation-mediated detection of selected interactions
• Evaluate the ability of RTK-adapter interaction measurement to identify rare resistant subpopulations
• Determine the predictive capacity of multiplexed interaction measurement for evaluating acquired therapeutic

resistance in vivo using patient-derived xenografts
This work will considerably improve our ability to identify efficacious drug combinations by: (a) developing a
mechanism-based assay for identifying which RTKs are driving bypass resistance, (b) improving our basic
understanding of exactly how network-level bypass resistance arises due to activation of non-targeted RTKs both
at the receptor-proximal and downstream signaling layer, and (c) expanding our understanding of the RTK AXL
with links to resistance, tumor spread, and immune avoidance.
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Figure 2: Multiple linear regression (MLR) identifies core
bypass resistance pathway components. A)

Luminescence-based measurement of PC9 & HCC827 cell
viability 72 hrs after treatment with 0 or 1 µM erlotinib and 50

ng/mL of the indicated growth factors (GFs). Bar colors
indicate conditions with partial (blue) or full (red) resistance.
Error bars indicate SEM of biological replicates (N = 5). B)

Phosphorylation measurement 4 hrs after same conditions. C)
Schematic of the regression modeling. In order to capture

dependencies on coordinate pathway activation, we
additionally included an interaction term between pAkt & pErk.

Thus, from 6 measurements and a constant term, we
regressed 8 input measurements to against viability at 72 hrs.

D) MLR models of signaling and viability in each and
combinations of the cell lines.

We propose to study both downstream and receptor-
proximal signaling during bypass resistance mediated
by AXL, and then across a wider panel of RTKs. In-
tegrating these measurements with quantitative mod-
eling will identify the connectivity between receptors,
adapters, and downstream signaling events, thereby
defining the essential set of signaling network changes
required for tumor cell survival in response to targeted
therapeutics. We will then apply this understanding by
measuring RTK-adapter interaction by PLA to predict
RTKs driving bypass resistance. This information will
identify novel points of therapeutic intervention and si-
multaneously enable predictive resistance mechanism
identification in a precise manner.

Overcoming bypass resistance RTKs play a cen-
tral role regulating cell response to environmental cues
during development and homeostasis5. RTK dysreg-
ulation contributes to a variety of diseases including
cancer6. RTK-targeted therapies have been success-
fully applied in cancer treatment to extend and improve
patient’s lives and are approved for a subset of lung
cancer patients. However, the effectiveness of these
therapies is always limited by resistance. How resis-
tance occurs varies widely, including through mutation
of the drug target to block the effect of therapy, am-
plification of the drug target to overcome inhibition,
pharmacokinetic barriers that block trafficking of the
drug to tumor cells, and “bypass" switching to alterna-
tive pathways not targeted by therapy7,8. In the case of
RTK-targeted therapies, many non-targeted RTKs may
become activated to provide bypass resistance9. Two
well-studied combinations are the ability of HER3 to
provide resistance to HER2-targeted therapy in breast
carcinoma, and the ability of Met to provide resistance
to EGFR-targeted therapies in lung carcinoma10–14. In
each case, the resistance-conferring receptors may
contribute to intrinsic or acquired resistance, can be-
come activated by multiple means including ligand-
mediated autocrine or paracrine induction, amplifica-
tion, or mutation, and can effectively be blocked by
combination therapy12,15,16.

In addition to driving bona fide resistance, bypass
RTKs can promote “persister" populations of cells for
long periods of time17,18. These persister populations
provide an opportunity for de novo resistance mechanisms to arise over time19. Importantly, many diverse
resistance mechanisms can arise from persister populations, and so targeting these cells upon initial treatment is
critical to improving survival outcomes20.

While bypass signaling is now appreciated as a common mechanism of acquired and intrinsic resistance,
exactly what pathway reactivation is essential, and whether it is conserved or varies across cancers and the driving
RTK, has not been addressed10,12,21–24. RTKs lead to a common set of downstream signals, but in vastly different
quantitative combinations. Due to these differences, RTKs differ in their ability to confer resistance10. Bypass
resistance is generally considered to be the reactivation of some essential set of signaling, often centered around



the Erk and/or Akt pathways, but examples of reactivation not leading to resistance suggest other pathways are
also important10,25. While appropriate combination therapies will likely provide considerable benefits relative to
existing single agents, a more thorough understanding of the signaling networks mediating resistance may reveal
targets less susceptible to bypass signaling26.

Many RTKs can drive bypass resistance, necessitating approaches to identify which RTK is implicated. RTKs
work by auto- and trans-phosphorylation, recruitment of adapter proteins, and then phosphorylation of those
adapters and other associated proteins. Systems biology approaches have generally concentrated on easily
measurable factors such as phosphorylation of downstream pathway components. However, downstream pathway
activation measurement lacks information about which upstream receptors are drivers. A recent study from the
Haura lab revealed that measuring EGFR interaction with a receptor-proximal adapter protein Grb2 via PLA could
predict EGFR inhibitor response better than abundance or activation of the receptor27. Such an approach could
be applied across receptors to identify which combination is driving tumor cell survival signaling with a better
understanding of receptor-proximal RTK signaling and its relation to tumor cell resistance.
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Figure 3: Conserved molecular programs during bypass
resistance can capture the effects of RTK co-activation.

A) PC9 viability measured by Incucyte cell counts at 72 hrs.
B) pERK & pcJun measurement across identical conditions.

Both of these measurements were chosen based on the
models in Fig. 2. Notably, an EGFR inhibitor (erlotinib)

potently inhibits pERK while an AXL inhibitor R428 inhibits
pERK & pcJun. C) Regression model prediction of viability

using just pERK versus actual values. D) Multiple linear
regression model prediction of viability with both pERK &

pcJun. Coordinate activation of EGFR/AXL is necessary for
PC9 viability via pERK & pcJun.

Uncovering the contribution of TAM RTK signaling
Tyro3, AXL, MerTK (TAM) receptors are a family of RTKs
with widespread roles in tumor cell resistance, immune
avoidance, and metastasis15,21,28,29. The receptor AXL
in particular drives resistance to targeted therapies in a
wide range of cancers15,25,30,31. Resistance through ex-
pression and activation of AXL is especially dire as the
receptor additionally sustains cells that have undergone
epithelial-to-mesenchymal transition and directs tumor
cell migration, resulting in potently increased metastatic
capacity15,28,32–34. Therapies targeting AXL are now in
human clinical trials, yet we have a poor understanding of
where and when AXL is activated, as well as the molec-
ular pathways engaged to enact phenotypic outcomes4,35.
TAM receptors are unique among RTKs in that their activ-
ity is potently regulated by interaction with phospholipid
moieties within the extracellular environment4,36,37. Thus,
measurements of ligand and/or receptor abundance are
unlikely to effectively capture the activation state of these
receptors. At the same time, these receptors uniquely
include ITIM and ITIM-like domains, and so may have a
unique signaling response relative to other RTK families38.
AXL additionally mediates resistance to PI3k inhibitors in
squamous cell carcinomas, and Mek inhibitors in breast
carcinoma, so the relevant resistance pathways are un-
likely to be simply Erk and Akt17,39. A better understanding
of AXL signaling in detail will direct approaches to block
these deleterious effects.

Addressing the role of RTK co-activation Different re-
ceptors seem to show context-dependent abilities to sup-
ply resistance, dependence upon transactivation of other
receptors, and coactivation patterns. For example, mutant
EGFR has been found to transactivate Met, and Met has
been observed to activate HER312,40. In each case, signaling from both receptors was important to tumor progres-
sion, but for unknown reasons on a mechanistic level. At the same time, RTK co-activation can endow cells with
new phenotypes, such as EGFR-mediated invasive ability in the case of AXL expression34,39. We hypothesize this
is because certain receptors lack the full complement of interactions to provide resistance and that these signals
must then come from other receptors. Understanding the receptor-proximal similarity and differences of RTKs on a
systems-level will contribute to our understanding for the role of RTK co-activation in resistance (Fig. 3).



Innovation
Bypass resistance to targeted therapies represents a considerable challenge due to the many tumor-intrinsic
and -extrinsic factors through which it can arise. Resistance exists on the level of downstream signaling network
reactivation, but must be traced back to the upstream changes driving resistance for therapeutic benefit. To
integrate these distinct signaling scales, we have combined multiple cutting-edge analytical technologies to
develop a highly innovative, integrated strategy to quantitatively map RTK-proximal adapter interactions
to essential signaling network changes driving bypass resistance (Fig. 1).

In this approach, we will first use a diverse set of bypass resistance mechanisms. By globally interrogating
the phosphorylation network by mass spectrometry and then applying machine learning for interpretation, we
will identify the critical signaling network changes leading to resistance. We will then map these signaling
network changes to RTK-adapter interactions by quantitatively measuring adapter interaction in each bypass
resistance condition using tandem affinity purification (TAP)-MS, combined with machine learning approaches
to identify the causal interactions driving the implicated downstream signaling events. Lastly, we will apply
the results of these earlier efforts, directly measuring RTK-adapter interactions in individual PDX tumors to
predict resistance mechanism. Taken together, this innovative approach uniquely enables one to map RTK-
proximal interactions to their resistance promoting capacity, and then apply this information to design
treatments in a precise manner. The experimental techniques–including quantitative MS, PLA, and multiplexed
biochemical measurement–along with machine learning approaches, enables this in their combination and is a
critical component of achieving this goal.
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Figure 4: Schematic of our modeling approach. Global phosphorylation
measurements will be clustered by k-means and then regressed against viability

outcome of the same conditions by MLR. This modeling will provide specific
predictions as to the role of phosphorylation clusters in promoting the

bypass-mediated resistance of cells. We will use Markov Chain Monte Carlo
(MCMC) sampling of the model posterior distribution across cluster sizes to

rigorously account for parameter uncertainty and non-identifiability. Thus, we will
be left with a family of models, which will provide alternative hypotheses and can

be updated with new observations from our validation experiments.

Two common challenges when
interpreting statistical modeling re-
sults are (1) sensitivity of the results
to parameter choice, such as the
number of clusters and (2) model
non-identifiability given the data.
Both of these can be especially prob-
lematic for high-dimensional data
such as obtained here, with an ex-
tremely large number of measure-
ments over a limited set of condi-
tions. Techniques such as partial
least squares regression (PLSR) are
generally predictive with such data,
but are not prescriptive (i.e. with new
measurements of signaling they can
predict new conditions, but do not
identify the causal factors). In or-
der to analyze this data in a man-
ner that addresses these limitations, we plan to take an innovative approach for data analysis, using a
Bayesian framework with Monte Carlo sampling of our analysis pipeline model posterior distribution. This
approach will allow us to make rigorous predictions despite parameter uncertainty and update our predictions
dynamically with new observations from our validation experiments.

Beyond implicating specific RTK-adapter interactions in bypass resistance, we will take an innovative approach
utilizing multiplexed PLA measurements across RTKs to predict resistance mechanism. We will perform these
predictions in individual PDX tumors, and then directly test our predictions by designing combination treatments
based on our measurements. Each interaction will be selected based upon the earlier work identifying each as
mechanistically critical to resistance. The dynamic range of each assay will be optimized to quantitatively identify
the resistance being conferred within each tumor by each RTK. These measurements will additionally provide us
single cell, spatially resolved interaction measurements. By utilizing this information, we will be able to assess
the contribution of spatial and single cell intratumoral heterogeneity and intricately tie it to specific resistance
mechanisms. Critically, this approach is both novel and vital to ensuring the translational value of these
findings and maximizing the clinical benefit of targeted therapies in lung cancer.



Approach
Aim 1: Map the global signaling state changes during switched RTK activation to identify the
essential features of bypass resistance
Rationale Cancers frequently acquire resistance to targeted therapies by increasing the activity of one or more
alternative RTKs. For example, resistance to inhibition of the epidermal growth factor receptor (EGFR) in non-small
cell lung cancer (NSCLC) can arise by compensatory activation of AXL15. While studies have identified many
RTKs capable of providing resistance to targeted agents, the number of receptors capable of doing so present a
challenge for identifying ideal therapeutic approaches10,41. This challenge of predictively identifying efficacious
therapeutic combinations is compounded by RTK regulation through genetic, expression, and microenvironmental
changes10,42. We hypothesize that a conserved downstream activation signature governs the development of
resistance. Identifying this signature may inform future therapeutic development and diagnostic strategies for
interpreting tumor response.

# Construct Erl GF
1 GFP-TAP N -
2 GFP-TAP Y -
3 AXL-TAP Y Gas6/PS
4 AXL(KD)-TAP† Y Gas6/PS
5 AXL(mut1)-TAP Y Gas6/PS
6 AXL(mut2)-TAP Y Gas6/PS
7 AXL(mut3)-TAP Y Gas6/PS
8 AXL(mut4)-TAP Y Gas6/PS
9 AXL(mut5)-TAP Y Gas6/PS

10 AXL(mut6)-TAP Y Gas6/PS
1 Parental N -
2 Parental Y -
3 GFP-TAP Y -
4 IGF1R-TAP Y IGF1
5 cMET-TAP Y HGF
6 FGFR1-TAP Y FGF1
7 ALK-TAP Y -
8 AXL-TAP Y Gas6/PS
9 PDGFRb-TAP Y PDGF

10 EGFR(T790M)-TAP Y EGF
Table 1: Conditions to be measured for

global signaling network state. As
measuring all 17 AXL mutants would be
challenging, we will prioritize a subset of
mutant constructs for analysis. We will
select mutants based on whether they

exhibit differences in our resistance
assays as compared to the wild-type

receptor. Selecting in this way will
maximize our chances of capturing the

most salient signaling differences.
†Kinase dead mutation K562R.

Erl: Erlotinib

While many mutational and expression changes have been identified
that lead to therapeutic resistance, a more unified understanding of re-
sistance from the perspective of the overall signaling network has not
emerged25,43. Erk reactivation is most commonly quantified during resis-
tance to erlotinib15, but other pathways are also important to viability and
proliferation in the presence of the inhibitor25. In principle, some set of
cellular signaling states must result in survival and thus resistance, while
others result in cell death and thus sensitivity. We hypothesize there is a
conserved resistance/sensitivity profile regardless of the relevant driving
RTK. If this is the case, examining multiple resistance mechanisms coor-
dinately should reveal an overall signaling network pattern of resistance,
informing future therapeutic development.

1.1. Functionally evaluate the ability of each RTK and AXL mutant to
promote resistance in each cell line model In order to quantitatively
assess the capacity of individual RTKs to mediate EGFR-targeted therapy
bypass resistance, and to enable downstream analyses in subsequent
Aims, we will stably express a subset of RTKs (IGF1R, FGFR1, ALK,
AXL, PDGFRb, cMET), each implicated in mediating bypass resistance, in
HCC827 and PC9 mutant EGFR lung carcinoma cells. Ectopic expression
will serve to reduce the influence of varied RTK expression on our results,
as each receptor studied will be expressed to similar levels and activated
by its cognate ligand. Each receptor will carry a TAP tag comprised of
both His and Myc tags for analysis in subsequent Aims (Tbl. 1).

While the above constructs will be extremely valuable in determining
how bypass resistance occurs via many different receptors, more closely
matched mechanisms of promoting bypass resistance will more sensitively
identify the key molecular events. For this, we will focus on the RTK
AXL, activation of which drives resistance to EGFR-targeted inhibitors,
invasion, and metastasis15. We have developed a panel of vectors for
ectopic AXL expression in which each intracellular tyrosine is mutated
to a phenylalanine. As a consequence of these matched constructs,
we can attribute variation in bypass resistance capacity to individual
phosphorylation events. We will, using retroviral infection, express each
of these in HCC827 cells, which have minimal endogenous expression of AXL but can be made resistant to
erlotinib through expression and activation of the receptor15. We will verify by mutation-specific qRT-PCR that
the vast majority of expressed AXL comes from our expression vector, and will use dCas9-mediated knockdown
of endogenous AXL if needed44. Each receptor mutant cell line will be treated with a mixture of 1 nM Gas6
and PS-presenting vesicles as work from the Meyer lab and others has shown these are critical to activation of
AXL4,36,37.

We will quantify the extent to which each panel of cells are resistant to erlotinib in response to distinct bypass
receptors and AXL mutants. To do so, the proliferation of cells with each receptor expressed will be monitored



hourly for seven days by live-cell microscopy within a tissue culture incubator (Fig. 5). Some investigations
into AXL-mediated resistance have suggested the receptor is more capable of mediating cell survival rather
than proliferation45. Similarly, IGF1R activity has been identified in PC9 cells as essential for cell survival but
not sufficient to induce resistance18. Our approach will allow us to deconvolve whether GF signaling is merely
extending cell survival or is indeed allowing for proliferation in the presence of targeted therapy. Quantitation of cell
numbers over time will ensure our later analyses are independent of the time point selected for the assay.
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Figure 5: Continuous quantification of cell
proliferation response. PC9 cells were
treated with erlotinib and different GFs,

then monitored for 5 days. GF
consumption over long-term culture is a

concern, and so we will replenish the
media every 48 hrs.

1.2. Measure the global signaling network state of cells with RTK-in-
duced bypass resistance For initial analysis, we will treat cells with
erlotinib with or without expression and activation of a bypass receptor
(Tbl. 1). To define the signaling network response we will quantify pro-
tein phosphorylation, using enrichment strategies for different subsets
of the phosphoproteome and performing the analysis by multiplexed LC-
MS/MS. We will provide an overview of the approach here and note that
detailed protocols for each aspect are available, either as separate pub-
lications46–49, supplemental methods to our publications50–52, or through
the White lab website. After 4 hrs, we will lyse cells in 8 M urea. We have
selected 4 hours as it is before we observe cell death, but optimally pre-
dicted outcome as compared to earlier measurements in our preliminary
studies3. Lysates will be reduced with dithiothreitol (DTT), alkylated with
iodoacetamide (IAA), and then diluted and digested to peptides using
trypsin at a 50:1 substrate to trypsin ratio overnight at room tempera-
ture. Following digestion, samples will be acidified, desalted, lyophilized
and stored at -80◦C. For multiplex quantification, lyophilized peptides
will be labeled with Tandem Mass Tag (TMT) 10plex mass tag labeling
kits (Thermo), with one label per stimulation condition. After labeling,
samples will be mixed and lyophilized.

To quantify a wide range of biologically relevant phosphorylation sites, protein phosphorylation analysis
will be performed in two steps for each set of labeled samples. (1) Initially, tyrosine phosphorylated (pTyr)
peptides will be enriched through immunoprecipitation (IP) with a set of pan-specific anti-pTyr antibodies53.
Following elution from the IP, samples will be subjected to a second stage of enrichment on an Fe3+-immobilized
metal affinity chromatography (IMAC) column to remove non-specifically retained non-phosphorylated peptides.
Phosphopeptides will be eluted and analyzed by ultra-low-flow nano-LC-MS/MS on custom microcapillary columns
with integrated electrospray emitter tips. Additionally, to quantify remaining phosphorylation site changes throughout
the network, the TMT-labeled samples will be separated into 20 concatenated fractions by basic reverse-phase
HPLC. Each fraction will be subjected to phosphorylation enrichment by IMAC, followed by quantitative ultra-low
nanoflow LC-MS/MS on an Q Exactive Plus orbitrap mass spectrometer. Based on several years of results from
application of variants of this protocol to a variety of biological samples, we expect that this approach will yield the
identification and quantification of ∼500 pTyr sites, and ∼10,000 additional pSer/pThr sites across thousands of
proteins. This level of network coverage will allow for the in-depth characterization of response to each bypass
resistance-inducing receptor, across a wide range of cellular pathways. This general protocol will be repeated for
two panels of conditions (Tbl. 1), thereby producing a massive compendium of quantitative signaling data that will
provide novel insight into the mechanism of action for cellular response.

1.3. Identify the conserved elements promoting resistance by multivariate statistical modeling With
measurement of the phosphorylation (§1.2) and phenotypic response (§1.1) we will build MLR models to determine
the relationship between signaling (our global phosphoproteomic measurements) and phenotype (viability in the
presence of erlotinib). Two common challenges when interpreting statistical modeling results are (1) sensitivity of
the results to parameter choice, such as the number of clusters and (2) model non-identifiability given the data.
Both of these can be especially problematic for high-dimensional data such as obtained here, with an extremely
large number of measurements over a limited set of conditions. Techniques such as PLSR are generally predictive
with such data, but are not prescriptive (i.e. with new measurements of signaling they can predict new conditions,
but do not identify the causal factors). The same limitation exists for L1-regularized regression, which can help
form predictive models but at the cost of model interpretation upon deconstruction.

In order to analyze this data in a manner that addresses these limitations, we plan to take a new approach



(Fig. 4). We will first utilize k-means clustering to identify sets of similarly regulated phosphosites across our
conditions. Phosphorylation site co-variation is able to reconstitute cell signaling networks and identify causal
interactions54–56. Thus, we expect these clusters to represent biologically meaningful signaling nodes. The
averages of these groups will then be used in MLR models, optionally with interaction parameters between clusters
(Fig. 2). These nonlinear relationships will be important to understanding the signaling-viability relationship as
we expect that pathway dependencies may not be linearly separable (e.g. cells may rely on Akt AND Erk being
activated for survival). We will then utilize a Bayesian approach, using MCMC to sample the model posterior
distribution across parameter weights and number of clusters57,58. (Note that clustering will be performed once for
each number of clusters within k-means, but with a posterior likelihood we will be able to combine our sampling
for different numbers of clusters.) Model likelihood will be estimated using the second-order Akaike information
criterion59. We will ensure mixing of our MCMC model through trace inspection, autocorrelation, and the Geweke
convergence diagnostic60. Through this approach, we will be left with a family of models that perform equivalently
well in explaining our measurements, and will have removed our dependence on cluster number by integrating
across all number of clusters (Fig. 6).
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Figure 6: Joint posterior probability distributions of models presented in Fig. 2D for
Akt/Erk and Akt/cJun. In this case, there are relatively few phosphorylation

measurements and so the model is easily well-specified. Significance in Fig. 2D is
for significantly non-zero parameters, which is reflected here in the distribution lying
off-axis. However, bivariate dependencies in the model specification exist (e.g. the
pAkt vs. pcJun values). This indicates that if, in validation experiments, the pAkt

parameter were to be positive, the model would predict a smaller pcJun parameter.
Shaded in grey is a likely possibility for higher-dimensional data, where significance

for a single parameter may break down. Such a distribution would indicate the
model can roughly either weight pAkt OR pcJun. Analysis only looking at the
optimal model would miss these competing hypotheses, or would find that the

model relies on neither parameter (since neither would be significantly non-zero
when examining single-variable marginal distributions). In this way sampling a

family of models can help make a set of testable hypotheses in the face of
incomplete model specification.

Once we have assembled a fam-
ily of models, one challenge will be
interpretation of these. We will ex-
amine the joint posterior probability
distributions for different parameters
and the parameter distribution within
principle component space for signif-
icantly non-zero parameter weights
and higher-order relationships. An-
other challenge, if different cluster
numbers provide comparably likely
models, is that the clusters will con-
tain different combinations of phos-
phorylation sites. We expect that in
most cases we will be able to match
clusters through their profiles and
fraction of shared phosphorylation
sites. However, if models with dif-
fering numbers of clusters provide
differing hypotheses, we plan to test
both. Validation experiments will be
used to construct priors within our
modeling effort, in order to further
refine our predictions.

An additional challenge during interpretation and validation of our model will be that we are measuring and
modeling phosphosite response, but will likely validate our model through manipulation of kinase activity. To
overcome this limitation, we will map the predicted kinase(s) for each phosphosite to the extent possible, and can
look for overrepresentation within particular clusters61. This mapping step will serve to identify the likely kinases
driving the effects observed via a set of phosphosites, using the consequential phosphosites as a readout of kinase
activity.

1.4. Validate model predictions of the relationship between signaling network state and resistance In
order to validate novel findings from our modeling approach, we will investigate the effects of novel targeted
inhibitor combinations and/or knockdown particular proteins and evaluate their effect on viability. Depending upon
the results of this validation, we may choose to examine the detailed mechanisms of these novel targets.

For example, in preliminary work examining a targeted subset of phosphosites3, we have identified JNK activity
as measured by pcJun as an important predictor of viability due to bypass resistance (Fig. 2). Using inhibitor
combinations across panels of cell lines, we have validated that JNK activity does indeed contribute to lung cancer
cell viability (Fig. 7), and is essential in combination with Erk for bypass resistance. This demonstrates that, with a
broader set of measurements, this theoretical framework for probing bypass resistance can uncover therapeutically
valuable molecular sensitivities.
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Figure 7: A) Viability of PC9 cells with combination Mek/JNK inhibition. B) Viability
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The y-axis is the same as that in (A). C) Measurement of the viability increase
conferred by HGF stimulation in the presence of 1 µM erlotinib combined with Mek

and JNK inhibition. Two unrelated JNK inhibitors and a panel of three other
EGFR-mutant cell lines elicited similar results.

This validation step will also be
essential for distinguishing among
multiple competing models. For ex-
ample, one subset of models may
show dependence upon a cluster of
known Erk substrates, while another
subset of models may replace this
dependence with a cluster of known
Akt substrates. By examining the ef-
fect of inhibitors for each of these
kinases, we will be able to distin-
guish between subsets of models.
Importantly, the standard approach
of identifying a single model to vali-
date would miss one or both of these
competing hypotheses.

Challenges & Alternative Approaches All of the computational and experimental approaches proposed here
are commonplace in the Meyer and White labs, and so we do not anticipate challenges in execution of this Aim.

One concern with this approach is that exogenous AXL expression may lead to non-physiological levels of
signaling. We will quantitatively measure the expression levels of AXL after transduction and, if needed, sort for
relatively low expressing populations of cells by FACS. AXL is observed to be very highly expressed in many
cancer cell lines however, and we expect our expression will be similar to endogenous levels observed4.

A central assumption of our modeling across different wild-type RTKs is that common changes direct resistance
regardless of the driving RTK. If this is not true, this will present a challenge for interpreting the signaling changes
that occur in each condition. However, the various AXL mutant receptors will help in this case, since they will
be more closely matched in their signaling consequence. Studying AXL-mediated resistance would then also
demonstrate an approach that could be adopted to study resistance via other RTKs.

Aim 2: Quantify the corresponding RTK interaction profiles to identify the requisite receptor-
level interactions promoting resistance
Rationale While understanding the signaling network changes that lead to bypass resistance is critical to our
understanding of how cells overcome targeted inhibition, blocking activation of signaling pathways common to
many cell types may not be feasible due to prohibitive toxicity. Inhibition at the level of RTK signaling has shown
clinical efficacy both as single agents and combinations with serious but manageable toxicity. However, targeting
bypass mechanisms requires that one is able to identify the salient RTK for individual malignancies.

Directly measuring RTK-adapter interaction and identifying the essential interactions that mediate resistance
upon RTK activation will be uniquely powerful for identifying which bypass receptor is driving resistance. Different
receptors seem to show context-dependent abilities to supply resistance, dependence upon transactivation of other
receptors, and coactivation patterns. For example, mutant EGFR has been found to transactivate Met, and Met has
been observed to activate HER312,40. Adapter interaction measurement will be uniquely powerful for identifying
this complex regulation as concomitant signaling from two receptors can only be deconvolved and compared with
RTK-proximal measurements. In each case, signaling from both receptors was important to tumor progression,
but for unknown reasons on a mechanistic level. We hypothesize this is because certain receptors lack the full
complement of interactions to provide resistance and that these signals must then come from other receptors.

To determine the influence of particular RTK-adapter interactions, it is necessary to examine them within
the proper cellular environment. The signaling consequence of RTK activation is the product of multiple factors
including receptor abundance, docking affinity, adapter abundance, and competition. One study has looked
at whether linear combinations of docking affinities can predict the phosphorylation of relatively RTK-proximal
signaling nodes62. However, docking affinities address which proteins can interact directly outside the environment
of the cell, rather than which do so in the particular physiological context. As an example of this shortcoming,
adapter phosphorylation was often only predicted with combinations of affinities for other proteins included as
well, and downstream signals could not be predicted. Lack of prediction may be a result of competition between
adapters, or affinities simply serving as RTK identifiers to the modeling effort, rather than mechanistically significant
measurements. This previous modeling also cannot take into account differences in stimulation state of a single



receptor, which is well known to often influence phenotypic outcomes63.
The information obtained here will directly inform the development of predictive assays based on adapter

interaction in Aim 3.
# Construct Erl GF/Inhibitor
1 GFP-TAP N -
3 AXL-TAP Y Gas6/PS
3 AXL-TAP Y R428
4 AXL(KD)-TAP† Y Gas6/PS
5 AXL(mut1)-TAP Y Gas6/PS
6 AXL(mut2)-TAP Y Gas6/PS
7 AXL(mut3)-TAP Y Gas6/PS
8 AXL(mut4)-TAP Y Gas6/PS
9 AXL(mut5)-TAP Y Gas6/PS

10 AXL(mut6)-TAP Y Gas6/PS
1 IGF1R-TAP Y IGF1
2 IGF1R-TAP Y Lisitinib
3 cMET-TAP Y HGF
4 cMET-TAP Y Crizotinib
5 FGFR1-TAP Y FGF1
6 FGFR1-TAP Y PD173074
7 ALK-TAP Y -
8 ALK-TAP Y TAE684
9 PDGFRb-TAP Y PDGF

10 PDGFRb-TAP Y Sunitinib
Table 2: Conditions to be measured for

their RTK-adapter interaction. As
measuring all 17 AXL mutants would be
challenging, we will prioritize a subset of

mutant constructs for analysis. The
selected AXL mutants will be matched

to those in Tbl. 1. †Kinase dead
mutation K562R. Erl: Erlotinib

2.1. Quantify the complement of receptor-interacting proteins dur-
ing bypass-mediated resistance In order to obtain a comparison of the
receptor-proximal interacting components, we will examine samples after
IP of each activated RTK from cell lysates. In conditions matching those
in §1.2, we will lyse cells in NP-40 lysis buffer, and IP each TAP-tagged
receptor using a monoclonal antibody binding 6xHis. After this IP and
washing, we will compete off the interacting complexes with an excess of
6xHis peptide, and bind the elutate to a monoclonal antibody binding the
Myc tag. Interacting complexes will again be eluted after washing using
an excess of Myc peptide. Elutions will be reduced, alkylated, and then be
diluted and digested to peptides using trypsin overnight at room tempera-
ture. Following digestion, samples will be acidified, desalted, lyophilized,
and labeled with TMT 10plex mass tag labeling kits (Thermo), with one
label per stimulation condition. After labeling, samples will be mixed and
lyophilized. Peptides will be analyzed by quantitative ultra-low nanoflow
LC-MS/MS on an Q Exactive Plus orbitrap mass spectrometer. Control
samples either with TAP-tagged GFP or with the expressed receptor inhib-
ited will serve to identify specifically interacting components (Tbl. 2). We
will filter for interacting peptides that are at least two-fold more abundant
than when the purified receptor is inhibited or GFP as a control is purified.
Through polyacrylamide gel separation and blotting, we will quantify His
tag abundance in a small fraction of each purified and digested sample as
normalization for the amount of receptor. Based on prior experience in the
Haura lab, we expect that this approach will identify hundreds of interacting
proteins1.

2.2. Correlate adapter interactions and downstream pathway activa-
tion to map the downstream consequences of receptor-proximal sig-
naling With measurements of downstream signaling (§1.2) driven by
measured RTK-adapter regulation (§2.1), we will build regression models of the relationship to identify the relevant
interactions driving each downstream signal. As we are most interested in the variation in interacting adapter
proteins and how this drives variation in the signaling consequences, we will employ PLSR (Fig. 8). Our choice of
modeling approach is also based on our expectation that the variation in adapter interaction and signaling outcome
will strongly co-vary between each AXL mutant and bypass receptor. Additionally, our relationship is "many-to-
many", in which multiple adapters may influence a downstream signaling node, and multiple signaling nodes may
be influenced by a single adapter. PLSR models will be derived with our adapter interaction measurements as
input and each signaling k-means cluster average as output considered together. Model robustness and parameter
significance will be determined through cross-validation and bootstrap sampling, respectively.

If we are interested in the drivers of single downstream signaling changes, we will employ the approach outlined
in §1.3. Being more prescriptive, it may offer more direct predictions of adapter interactions to perturb.

2.3. Validate the role of particular adapter interactions in driving therapeutic resistance Once we have
identified the particular RTK adapters driving resistance signaling, we will validate our predictions experimentally.
Expression of individual adapter proteins implicated in bypass resistance-associated effects will be disrupted. We
will pursue CRISPR-mediated knockout and dCas9-mediated knockdown in parallel, as complete knockout may
prove sufficiently toxic on its own to prevent derivation of the required cells44. First, we will confirm the expected
changes to downstream signaling effects. Where possible with available reagents, we will confirm the signaling
consequences by multiplexed ELISA measurements, across a wide panel of phosphosites, to not only confirm an
effect on the predicted target, but also specificity among many pathways. Next, we will test whether knockdown of
implicated adapter proteins has the predicted effect on bypass resistance of cells, using the assays discussed in
§1.1. Finally, predictions will be confirmed across a wider panel of EGFR mutant and wild-type lung carcinoma cell
lines.
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(see §1.3).

With this work, we anticipate that we will identify particu-
lar RTK-interacting proteins that are essential for resistance
driven by that receptor. As a hypothetical example, CrkL
may be essential for AXL-mediated resistance to EGFR
inhibitors in lung carcinoma cell lines. This would indicate
that measuring AXL-CrkL interaction would be especially
informative for determining which cell populations are sus-
ceptible to AXL inhibition. If we are able to identify such
relationships, we will examine other, broader sources of
genomic data for further evidence of this relationship. For
example, in earlier work we examined whether measur-
ing multiple RTKs might be more predictive of erlotinib re-
sponse in breast carcinoma cell lines than just EGFR. This
work identified that AXL and EGFR expression was more
predictive than EGFR expression alone or EGFR with other
RTKs34. If interaction with particular adapter proteins is
essential for bypass resistance through particular RTKs, we
will examine whether coordinate expression of the adapter
and receptor is more predictive of response than either
alone64.

Challenges & Alternative Approaches One concern
with sustained knockdown of adapter proteins is widespread
cell death, preventing any investigation into the signaling
consequences. As an alternative, we will apply transient
siRNA transfection, which may provide a period after knock-
down but before cell death to analyze the signaling con-
sequences. While aware of limitations of the technology,
we will consider shRNA-mediated knockdown of adapters
should we have trouble applying CRISPR. If the site of
RTK interaction can be identified, it may also be possible to
express a mutant version of the RTK lacking interaction with the adapter to study the signaling consequences.

Aim 3: Evaluate multiplexed protein interaction measurement as an effective method to predict
resistance mechanism
Rationale Many expression or microenvironmental changes exist that can make tumor cells resistant to a
targeted therapy. As a result, we need ways of assessing bypass resistance that are mechanistically based and
work across many bypass pathways simultaneously. In this Aim, we will apply our insights from earlier results to
evaluate RTK-adapter measurement by PLA as a means of predicting resistance mechanisms. We will utilize
well-established in vitro models as well as PDX models of therapeutic resistance to determine the predictive
capacity of these measurements and accordingly their utility.

3.1. Validate proximity ligation-mediated detection of selected interactions In order to quantify the abun-
dance of particular RTK-adapter interactions, we will employ PLA65,66 (Fig. 9). In this assay, two monoclonal
antibodies are used against interacting targets in fixed samples. Each antibody is conjugated to an oligonucleotide
(oligo) probe. After allowing each antibody to bind its target, samples are incubated with two oligos complementary
to both probes. If the antibodies are sufficiently close, the complementary sequences align each oligo such that
the two non-conjugated fragments are ligated into a single loop. Polymerase is then added to extend one of the
conjugated oligo sequences using the circular DNA as template. Finally, fluorescent probe is added to quantify the
spots of DNA produced during the rolling circle amplification. Through these steps, the interaction between two
proteins can be specifically quantified.

Before using PLA in order to detect RTK-adapter interactions, we will first need to validate that each antibody
we use is specific for the receptors and adapters of interest27. The adapters we examine will depend upon our
analysis in Aim 2. First, we will verify specific labeling by immunofluorescence (IF) in cells with and without
knockdown and ectopic expression of each adapter and receptor. Next, we will stimulate cells with the cognate
GF for the RTK of the pair, or inhibit the receptor with a specific inhibitor (Tbl. 3), and verify that we observe low



background levels of PLA in the absence of receptor activity, as well as an activation-dependent increase in PLA
signal. The background for PLA assays is likely proportional to the abundance of each target, and so this second
test will verify that our assay specifically quantifies active complex. We will only proceed with antibody pairs that
satisfy all criteria. H1299 control H1299 + Rx106, 1 uM, 3h
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Figure 9: PLA analysis of H1299 cells for AXL
phosphorylation (using AXL and pTyr antibodies, top) and

AXL-p85a interaction (bottom), in the presence of DMSO or a
specific AXL inhibitor. The Haura lab has extensive experience
developing and applying these assays in clinical samples27.

Next, we will optimize each assay for the appropri-
ate quantitative range to evaluate the relationship be-
tween PLA signal and cell viability. Each cell line with
a tagged resistance-promoting receptor will be treated
with increasing amounts of inhibitor for the receptor,
and viability will be assessed. For each inhibitor con-
centration, PLA signal will be assessed while varying
the dilution of each antibody independently. The opti-
mal dilution chosen will both maximize the range over
which inhibitor dilutions can be resolved by the PLA
assay, and maximize the variation in cell line viability
explained.

3.2. Evaluate the ability of RTK-adapter interaction
measurement to identify rare resistant subpopula-
tions While resistance occurs in part through intrinsic
molecular network regulatory changes throughout a
tumor, it also occurs through an evolutionary selection
process between single tumor cells in the context of
tumoral heterogeneity12,33. This process dictates that
small subpopulations within a tumor can result in con-
siderably different survival outcomes for patients. As
a result, measuring average tumor properties may have limited predictive capacity for resistance after selection
driven by a targeted therapy. The single-cell results produced by PLA thus might provide valuable information
about subclonal populations before tumors are overall resistant.
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R428 Y - - - - - -
Erlotinib - Y - - - - -
TAE684 - - Y - - - -

Crizotinib Y - Y Y - - -
PD173074 - - - - Y - -

Sunitinib - - - - - Y -
Linsitinib - - - - - - Y

Table 3: Inhibitors to be used in
xenograft studies. Crizotinib’s

polypharmacology will be
considered when interpreting

results.

To test the potential for single-cell PLA analysis to identify resistance subclones,
we will employ a dilution strategy with cell lines of known resistance mechanism.
First, we will verify that PLA measurement is able to faithfully measure subpopu-
lations of cells with ectopic AXL expression and activation15. These stable clones
will be diluted at known ratios into parental cells. These mixtures will then be fixed
and stained, and the ratio of AXL-mediated resistant cells will be determined by
a blinded experimenter. In order to ensure that our ability to distinguish bypass-
dependent subpopulations is through measurement of the receptor activity, rather
than just an increase in AXL abundance, we will perform the equivalent experiment
with dilution of AXL wild-type expressing cells into cells expressing a kinase dead
form of the receptor. Separately, by staining for the Myc tag by IF, we will be able
to assess the fidelity of assessing PLA in heterogeneous populations of cells in a
supervised fashion.

3.3. Determine the predictive capacity of multiplexed interaction measure-
ment for evaluating acquired therapeutic resistance in vivo using patien-
t-derived xenografts To directly assess the value of multiplexed interaction measurement for predictively
determining drug combinations over RTK abundance or activation, we will utilize a panel of RTK-mutant lung can-
cer PDXs (Fig. 10). These tumors are created by direct transfer of primary tumor and stromal tissue from patients,
and effectively recapitulate intertumoral heterogeneity and its effect on response67. They retain phenotypic traits of
the original tumor and can be serially passaged in mice, allowing for matched analysis of molecular features and
therapeutic response68. We will include 24 PDX models in our analysis, sufficient for power at 0.8 at a significance
level of p < 0.05 given a moderate effect size (f = 0.34, balanced one-way ANOVA).

First, from each xenograft, we will obtain tissue sections, tissue lysate, and serum samples. Our inclusion of
serum is based on recent work which identified that proteolytically shed receptor can be detected in peripheral
blood, and responds dynamically to changes in RTK activity69. By quantitative ELISA, we will measure the



abundance of a wide RTK panel (EGFR, HER2, HER3, HER4, ALK, FGFR1, PDGFRb, cMET, IGF1R, AXL) in
both tissue lysate and in serum in order to determine the most abundant receptors in each. We have employed
this Luminex-based quantitation strategy extensively in clinical samples with highly quantitative and sensitive
results69,70. By using a pTyr detection antibody along with the same capture antibodies for the RTK ELISA, we will
quantify activated receptor within the tissue lysate. Tissue sections from each sample will be quantified by PLA
using the optimized strategies from above.
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Figure 10: Individualized trial strategy to evaluate the efficacy of each precision
therapy approach. Combination therapies will be selected based upon four different

strategies. The response of each combination across each PDX model will be
evaluated. By this strategy, each diagnostic approach will be evaluated in matched

samples.

The two RTKs with the most
abundant signal will identify the in-
hibitor combinations (Tbl. 3) to be
used according to each strategy.
Thus, for each xenograft, up to four
combination treatments of inhibitor
pairs will be applied (strategies may
identify the same inhibitor pair). Ani-
mals will be randomized into treat-
ment groups when tumors have
reached 100 mm3, and treated with
oral dosing daily until day 21. Tu-
mor volume will be measured twice
weekly and calculated according to
1
2 (w · h · l). Animals will be eutha-
nized on day 28, or when tumors
have reached 2000 mm3.

Predictive regimens (PLA-based, pRTK-based, etc) will be compared by examining response across PDX
tumors and their matched combinations. Progression-free survival will be calculated as the time until tumor
doubling after the onset of inhibitor treatment. Significance for a difference in progression-free survival will be
calculated by a log-rank two-sample test, and response by balanced one-way ANOVA.

After sacrifice, each measurement of RTK abundance, activation, and adapter interaction will be performed
on the outgrowth tumors. We will use the pre-treatment single-cell PLA measurements to determine whether
subclonal populations with activated receptors not targeted by inhibitor predicts the driving receptor upon resistant
outgrowth. Through the tissue bank at Moffitt, we will be able to compare our measurements to those of patients
who have been treated with EGFR inhibitors, to examine whether we can identify similar subclonal outgrowth in
clinical samples.

Challenges and Alternative Approaches Identifying specific antibodies for each protein target will likely be one
of the largest challenges to this effort. To ensure this does not delay our efforts, we will begin this as soon as is
feasible. Our strict guidelines for validation will help to prevent setbacks later in this Aim. Notably, four antibody
pairs–EGFR-Grb2, MET-Grb2, ALK-Shc1, and AXL-p85–have already been validated by these criteria in the Haura
lab27. Two additional antibody pairs EGFR-Gab1 and EGFR-Shc have been validated in the White lab52.

Although we will be examining bypass resistance in a multiplexed manner, and thus look across a set of
possible resistance mechanisms, we will be far short of covering all RTKs. Thus, in validation of our assay in
cases where the exact resistance mechanism is not defined, the possibility exists for bypass resistance we are not
capturing due to our limited coverage of receptors. In this case, one option available to us will be to IP individual
RTK-interacting proteins, and quantify the receptors that are pulled down preferentially in the resistant condition.
This would potentially allow us to identify underappreciated RTK bypass-mediated resistance mechanisms, and
identify how we might improve our assay by wider coverage across receptors.

While selecting the most active two targets by PLA should identify the ideal inhibitor combinations to administer,
this selection strategy may not be fully predictive of the resulting response. For example, if more than two RTKs are
fully redundant in providing survival signaling, two inhibitors may be insufficient. Our multi-faceted measurements
of RTK abundance, phosphorylation, and adapter interaction matched to responses with inhibitor combinations will
provide a valuable data set for testing hypotheses for predicting response to inhibitor combinations. For example,
PLA signal for interaction with the targets of an inhibitor combination may favorably predict response. However, a
lack of PLA signal for interaction with other bypass receptors may be just as informative for predicting that the
inhibitor combination will elicit a response. We will make this set of individual measurements and responses
available for others and use modeling to interrogate hypotheses such as this.



Glossary
DTT dithiothreitol. 7

EGFR epidermal growth factor receptor. 6, 13

GF growth factor. 3, 7, 11

IAA iodoacetamide. 7
IF immunofluorescence. 11, 12
IMAC immobilized metal affinity chromatography. 7
IP immunoprecipitation. 7, 10, 13

MCMC Markov Chain Monte Carlo. 5, 8
MLR multiple linear regression. 3, 5, 7, 8
MS mass spectrometry. 2, 5

NSCLC non-small cell lung cancer. 6

oligo oligonucleotide. 11

PDX patient-derived xenograft. 2, 5, 11–13
PLA proximity ligation. 2–5, 11–13
PLSR partial least squares regression. 5, 7, 10, 11
PS phosphatidylserine. 2, 6
pTyr tyrosine phosphorylated. 7, 12, 13

RTK receptor tyrosine kinase. 2–6, 9–13

TAM Tyro3, AXL, MerTK. 4
TAP tandem affinity purification. 5, 6, 10
TMT Tandem Mass Tag. 7, 10
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